Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là:
a + b 2 ≥ a b
Các hình chữ nhật có cùng chu vi thì a + b 2 không đổi. Từ bất đẳng thức a + b 2 ≥ a b và không đổi suy ra ab đạt giá trị lớn nhất bằng a + b 2 khi a = b.
Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là:
a + b 2 ≥ a b
Các hình chữ nhật có cùng diện tích thì ab không đổi. Từ bất đẳng thức a + b 2 ≥ a b và ab không đổi suy ra a + b 2 đạt giá trị nhỏ nhât bằng ab khi a = b.
Điều này cho thấy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:
\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)
Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi).
Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.
b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)
Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.
Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi hình chữ nhật là ABCD, nội tiếp đường tròn tâm O.
Vì tam giác ABC vuông tại B nên nội tiếp đường tròn đường kính AC, mà đường tròn đó chính là đường tròn tâm O ở trên
=> O là trung điểm AC.
Tương tự, O cũng là trung điểm BD.
b/ Chu vi lớn nhất.
Chu vi = 2(AB+BC) nên cần tìm giá trị AB+BC lớn nhất.
Mà ABC vuông tại B nên theo Pythagoras: \(AB^2+CB^2=AC^2=4R^2\)
Áp dụng bất đẳng thức \(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\Leftrightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\text{ }\left(x,y>0\right)\)
\(AB+BC\le\sqrt{2\left(AB^2+BC^2\right)}=\sqrt{8R^2}=2R\sqrt{2}=\text{không đổi.}\)
Dấu "=" xảy ra khi AB=BC <=> ABC vuông cân tại B <=> OB vuông góc AC <=> ABCD là hình vuông <=> ........ (bất cứ cái gí mình cần).
a/ Diện tích lớn nhất.
Tương tự như trên
\(S_{ABCD}=AB.BC\le\frac{AB^2+BC^2}{2}=2R^2\)
Dấu "=" xra khi AB=BC <=>....Hình vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
Các hình hộp chữ nhật có cùng tổng ba kích thước thì a + b + c 3 không đổi.
Vì a + b + c 3 ≥ a b c 3 và a + b + c 3 không đổi nên a b c 3 đạt giá trị lớn nhất a + b + c 3 khi a = b = c.
Vậy trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi chiều dài và chiều rộng của hình chữ nhật là $a,b$ (m)
Theo bài ra ta có:
$a+b=134:2=67$
$(a-1)(b-1)=28^2=784$
$\Leftrightarrow ab-(a+b)+1=784$
$\Leftrightarrow ab-67+1=784$
$\Leftrightarrow ab=850$
Từ $a+b=67$ và $ab=850$ áp dụng định lý Viet đảo thì:
$a,b$ là nghiệm của pt:
$X^2-67X+850=0$
$\Rightarrow (a,b) = (50,17)$
Mà $a>b$ nên chiều dài là 50 m, chiều rộng là 17m
Ta có bất đẳng thức Cauchy với 2 số a,b không âm :\(\frac{a+b}{2}\ge\sqrt{ab}\)
a)Gọi độ dài 2 cạnh liên tiếp của hình chữ nhật là a,b->a+b=k không đổi
->Shcn=ab\(\le\frac{\left(a+b\right)^2}{4}\)=\(\frac{k^2}{4}\)
Dấu "=" xảy ra <=>a=b<=> hình vuông
b)Gọi độ dài 2 cạnh liên tiếp của hình chữ nhật là a,b->ab=k không đổi
Chu Vi HCN=2(a+b)\(\ge\)\(4\sqrt{ab}\)=4\(\sqrt{k}\)
Dấu "=" xảy ra <=> a=b <=>Hình vuông