![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![]() |
Đề bài: tính diện tích phần bôi đen (đơn vị cm)
Đáp án: Lấy diện tích hình chữ nhật trừ đi diện tích hai hình tròn rồi chia đôi. Sau đó bôi đen góc nhọn phía dưới bên trái.
![]() |
Điều cần làm là tính diện tích hình màu đỏ và nó được tính như sau:
1. Diện tích góc màu xanh = (Diện tích hình vuông 10*10 - diện tích hình tròn) chia cho 4
2. Diện tích cung màu vàng = diện tích cung hình tròn - diện tích tam giác ABD
- Diện tích tam giác ABD khá đơn giản khi biết cạnh AB = 5 và góc ACB có tang = 1/2.
- Trong đó diện tích cung tròn cũng dễ dàng tìm ra khi biết được góc của cung là (180-2*góc CAB).
3. Vậy diện tích phần màu đỏ = Diện tích tam giác LAM - diện tích cung màu vàng - diện tích góc màu xanh.
![](https://rs.olm.vn/images/avt/0.png?1311)
TA CÓ :\(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(\Rightarrow\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{3}+\sqrt{2}}+2014=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{3}+\sqrt{2}}+2014\)
\(=1+2014=2015\)
Vậy giá trị biểu thức là 2015.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ gt, suy ra
\(\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)+\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+2\right)+\left(x+y+2\right)^2=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left(2x^2-2xy+2y^2+2x+2y+4\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)
Do đó: \(x+y+2=0\Leftrightarrow x+y=-2\)
Mặt khác \(xy>0\Rightarrow x< 0;y< 0\)
Áp dụng AM-GM, ta có
\(\sqrt{\left(-x\right)\left(-y\right)}\le\dfrac{\left(-x\right)+\left(-y\right)}{2}=1\) nên \(xy\le1\)\(\Rightarrow\dfrac{-2}{xy}\le-2\)
\(M=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\le-2\)
GTLN của M là -2 khi x=y=-1
Áp dụng Cauchy-Schwarz dạng Engel, ta có
\(VT=\dfrac{a^6}{a^3+a^2b+b^2a}+\dfrac{b^6}{b^3+b^2c+c^2b}+\dfrac{c^6}{c^3+c^2a+ca^2}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Mặt khác: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
Tương tự: \(b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(3\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Rightarrow\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\dfrac{a^3+b^3+c^3}{3}\)
Vậy ta có đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=c
Ko đăng câu hỏi linh tinh
Hok tốt
# MissyGirl #
minh an nham day ma