Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Áp dụng định lí py-ta-go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow18^2+24^2=BC^2\)
\(\Leftrightarrow BC^2=900\)
\(\Leftrightarrow BC=30\left(cm\right)\)
Do CD là phân giác \(\widehat{ACB}\)
\(\Rightarrow\frac{AC}{AD}=\frac{BC}{BD}\Leftrightarrow\frac{24}{AD}=\frac{30}{BD}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{24}{AD}=\frac{30}{BD}=\frac{24+30}{AD+BD}=\frac{54}{AB}=\frac{54}{18}=3\)
Ta có : \(\frac{24}{AD}=3\Leftrightarrow AD=8\left(cm\right)\)
\(\frac{30}{BD}=3\Leftrightarrow BD=10\left(cm\right)\)
Vậy BC = 30 cm
AD = 8 cm
BD = 10 cm
b)
Xét tam giác BHA và tam giác ABC có :
\(\widehat{BAC}=\widehat{AHB}\)
chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác BHA đồng dạng với tam giác ABC (g-g)