
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ Ta có
\(6^3=216;6^4=1296\)
\(\Rightarrow n\le3\Rightarrow n=\left\{0;1;2;3\right\}\)
Thay lần lượt các giá trị của n vào \(18mn+6^n=222\) ta tìm được n=1 và m=12 là giá trị thoả mãn biểu thức
b/
\(\overline{abcd}=100.\overline{ab}+\overline{cd}=12.\overline{ab}+\overline{cd}+88.\overline{ab}\)
Ta có \(\left(12.\overline{ab}+\overline{cd}\right)⋮11;88.\overline{ab}⋮11\Rightarrow\overline{abcd}⋮11\)

5/a=1/6+b/3
5/a=1/6+2b/6
5/a=(1+2b)/6
a x (1+2b)=5x6=30
-->a và 1+2b thuộc ước của 30
Mà a và b là các số nguyên dương nên a và 1+2b thuộc tập hợp 1;2;3;5;6;10;15;30
Vì a và b là các số nguyên dương;a x (1+2b)=30 nên ta có bảng:
a | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
1+2b | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
b | không có giá trị của b | 7 | không có giá trị của b | không có giá trị của b | 2 | 1 | không có giá trị của b | 0 |
Kết luận | LOẠI | CHỌN | LOẠI | LOẠI | CHỌN | CHỌN | LOẠI | CHỌN |
Vậy a thuộc tập hợp 2;6;10;30
b thuộc tập hợp 7;2;1;0


a) Ta thấy ƯCLN(a,b)=8 và BCNN(a,b)=48 => ƯCLN(a,b) . BCNN(a,b) = a . b = 8 . 48 = 384
Vì ƯCLN(a,b) = 8, nên ta đặt:
a = 8.c; b = 8.d; ƯCLN(c,d) = 1
theo bài ta có:
a . b = 384
hay:8.c . 8.d = 384
=> 64 . c.d = 384
c.d = 6
ta có bảng :
c 1 2
d 6 3
nếu c=1 và d=6 thì a=8 và b=48 hoặc a=48 và b=8
c=2 và d=3 thì a=16 và b=24 hoặc a=24 và b=16
kết luận tự làm
còn lại để hôm khác
b)
(+) Hiển nhiên A chia hết cho 6 vì các số hạng của S đều chia hết cho 6 (1)
(+) Ta có:\(S=6+6^2+6^3+....+6^{100}\)
\(S=\left(6+6^2\right)+\left(6^3+6^4\right)+....+\left(6^{99}+6^{100}\right)\)
\(S=6.\left(1+6\right)+6^3.\left(1+6\right)+.....+6^{99}.\left(1+6\right)\)
\(S=6.7+6^3.7+.....+6^{99}.7=\left(6+6^3+...+6^{99}\right).7\)
=>S chia hết cho 7 (2)
Từ (1) và (2) ;kết hợp với (6;7)=1
=>S chia hết cho 42 (đpcm)
cần viết lời giải ạ
b đâu