Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

a) Thay \(x=a\) vào hai biểu thức ta có:
\(A=5.(a+3)-7\)
\(=5.a+15-7\)
\(=5.a+8\) \(\left(1\right)\)
\(B=5.\left(a-1\right)+13\)
\(=5.a-5+13\)
\(=5.a+8\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(A=B\) với mọi \(x\)
a) Ta có:\(A=5\left(x+3\right)-7=5x+15-7=5x+8\)
\(B=5\left(x-1\right)+13=5x-5+13=5x+8\)
\(\Rightarrow A=B\)
Vậy với mọi x thì A = B

\(-\frac{1}{4}x^2+x-2\)
\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)
\(=-\left(\frac{1}{2}x-1\right)^2-1\)
Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)
Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

Gọi đa thức \(P\left(x\right)=\left(-x^2\right)+x^4+1\)
\(\Rightarrow P\left(x\right)=\left(-x^2\right)+\left(x^2\right)^2+1\)
\(\Rightarrow P\left(x\right)=x^2+1\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow P\left(x\right)=x^2+1>0\)
=> \(P\left(x\right)=\left(-x^2\right)+x^4+1\) không có nghiệm
Gọi \(A=5-\left[\left(-x^2\right)+x^4\right]\)
Để \(A_{max}=5-\left[\left(-x^2\right)+x^4\right]\)
Thì \(\left(-x^2\right)+x^4_{min}\)hay \(x^2_{min}\left(c.a\right)\)
Mà \(x^2\ge0\forall x\).Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(\Rightarrow A_{max}=5\Leftrightarrow x=0\)

Bạn xét tích thì nó ra dương thì tất nhiên có 1 biểu thức lớn hơn 0 rồi
Ghi sai đề òi phải là
`A=[4.(4x+5)]:2`
`=(16x+20):2`
`=8x+10(1)`
Mà `B=8(x+1)+2`
`=8x+8+2`
`=8x+10(2)`
`(1),(2)=>A=B`
Chứng tỏ A và B có cùng giá trị với mọi x.