
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A= 22016-( 22015+22014+...+21+20)
Đặt B=22015+22014+...+21+20
Ta có: 2.B= 2.(22015+22014+...+21+20)
hay 2B= 22016+22015+...+22+21
2B-B=(22016+22015+...+22+21)-(22015+22014+...+21+20)
=22016-1
Do đó A=22016-(22016-1)=22016-22016+1=1
Vậy A=1

\(A=2^{2016}-2^{2015}-..........-2-1\)
\(\Leftrightarrow A=2^{2016}-\left(2^{2015}+2^{2014}+.........+2+1\right)\)
Đặt : \(H=2^{2015}+2^{2014}+......+2+1\) \(\Leftrightarrow A=2^{2016}-H\)
\(\Leftrightarrow2H=2^{2016}+2^{2015}+..........+2^2+2\)
\(\Leftrightarrow2H-H=\left(2^{2016}+2^{2015}+.......+2\right)-\left(2^{2015}+2^{2014}+......+1\right)\)
\(\Leftrightarrow H=2^{2016}-1\)
\(\Leftrightarrow A=2^{2016}-\left(2^{2016}-1\right)\)
\(\Leftrightarrow A=2^{2016}-2^{2016}+1\)
\(\Leftrightarrow A=1\)

A=20+21+22+...+22015
=>A=1+2+22+...+22015
=>2A=2+22+23+...+22016
=>2A-A=(2+22+23+...+22016)-(1+2+22+...+22015)
=>A=22016-1
mà B=22016
=>A và B là 2 số liên tiếp(đpcm)
=> 2A = 2.( 20 + 21 + 22 + .... + 22015 )
=> 2A = 21 + 22 + 23 + .... + 22016
=> 2A - A = ( 21 + 22 + 23 + .... + 22016 ) - ( 20 + 21 + 22 + .... + 22015 )
=> A = 22016 - 1
B = 22016
Vì 22016 - 1 và 22016 là 2 số tự nhiên liên tiếp nên A và B là 2 số tự nhiên liên tiếp ( đpcm )

\(B=2^{2015}+2^{2014}+...+2^1+1\)
\(\Leftrightarrow2B=2^{2016}+2^{2015}+...+2^2+2\)
\(\Leftrightarrow B=2^{2016}-1\)
\(A=2^{2016}-B=1\)

\(\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\le0\)
\(\left\{{}\begin{matrix}\left|3x-1\right|\ge0\Rightarrow\left|3x-1\right|^{2015}\ge0\forall x\\\left(2x-y\right)^{2016}\ge0\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\ge0\\\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}\le0\end{matrix}\right.\)
\(\Rightarrow\left|3x-1\right|^{2015}+\left(2x-y\right)^{2016}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-1\right|^{2015}=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\\\left(2x-y\right)^{2016}=0\Rightarrow2x=y\Rightarrow x=\dfrac{1}{2}y\Rightarrow y=\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow A=-2\dfrac{1}{3}^2-\dfrac{1}{3}.\dfrac{1}{6}+\dfrac{1}{6}^2+2016\)
\(A=-2.\dfrac{1}{9}-\dfrac{1}{18}+\dfrac{1}{36}+2016\)
\(A=\dfrac{-8}{36}-\dfrac{2}{36}+\dfrac{1}{36}+2016\)
\(A+-\dfrac{1}{4}+2016\)
A=22016-22015-...-2-1
=22016-(22015+...+2+1)
=22016-(1+2+...+22015)
Đặt B = 1+2+...+22015
2B=2+22+...+22016
2B-B=(2+22+...+22016)-(1+2+...+22015)
B=22016-1
Thay B vào A ta có:
A = 22016 - (22016-1) = 22016-22016+1=1