Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A=1/22+1/32+...+1/1002.Ta có:
A>1/2.3+1/3.4+...+1/100.101=1/2-1/101=99/202
A< 1/1.2+1/2.3+...+1/99.100=1-1/100=99/100
![](https://rs.olm.vn/images/avt/0.png?1311)
A=\(\frac{n\left(n+1\right)}{2}\)
F=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Từ 1-> n có: (n-1)+1=n (số hạng)
=>\(A=1+2+3+...+n=\frac{\left(n+1\right).n}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\left(x-y^2+z\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\left(z-3\right)^2\ge0\)
Mà \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)
+\(\text{ }\left(y-2\right)^2=0\)
\(\Rightarrow\text{ }y-2=0\)
\(y=0+2\)
\(y=2\)
+ \(\left(z-3\right)^2=0\)
\(\Rightarrow z-3=0\)
\(z=0+3\)
\(z=3\)
+ \(\left(x-y^2+z\right)^2=0\)
\(\Rightarrow x-y^2+z=0\)
\(x-2^2+3=0\)
\(x-4=0-3\)
\(x-4=-3\)
\(x=-3+4\)
\(x=1\)
Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình chỉ biết làm câu b thôi. Xl nhé!
b/ \(2^x=32^5.64^6\)
\(\Rightarrow2^x=\left(2^5\right)^5.\left(2^6\right)^6\)
\(\Rightarrow2^x=2^{25}.2^{36}\)
\(\Rightarrow2^x=2^{25+36}\)
\(\Rightarrow2^x=2^{61}\)
\(\Rightarrow x=61\)
Vậy \(x=61\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=2015+2015^2+...+2015^{100}\)
\(M=\left(2015+2015^2\right)+...+\left(2015^{99}+2015^{100}\right)\)
\(M=2015\left(1+2015\right)+...+2015^{99}\left(1+2015\right)\)
\(M=2015\cdot2016+...+2015^{99}\cdot2016\)
\(M=2016\left(2015+...+2015^{99}\right)⋮2016\)
\(M=2015+2015^2+2015^3+.....+2015^{100}\)
\(=>M=\left(2015+2015^2\right)+\left(2015^3+2015^4\right)+.....+\left(2015^{99}+2015^{100}\right)\)
\(=>M=2015\left(1+2015\right)+2015^3\left(1+2015\right)+2015^{99}\left(1+2015\right)\)
\(=>M=2015.2016+2015^3.2016+.....+2015^{99}.2016\)
\(=>M=\left(2015+2015^3+...+2015^{99}\right).2016⋮2016\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình chỉ biết làm câu b thôi. Xl nhé!
b/ \(2^x=32^5.64^6\)
\(\Rightarrow2^x=\left(2^5\right)^5.\left(2^6\right)^6\)
\(\Rightarrow2^x=2^{25}.2^{36}\)
\(\Rightarrow2^x=2^{25+36}\)
\(\Rightarrow2^x=2^{61}\)
\(\Rightarrow x=61\)
Vậy \(x=61\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7+...+2^{98}.7\)
\(\Rightarrow A=\left(2+2^4+...+2^{98}\right).7⋮7\)
\(\Rightarrow A⋮7\)
cộng hay là gì