\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

a)Ta có

2014xy \(⋮\) 42

=> 201400 + xy \(⋮\) 42

=> 42.4795 +xy + 10

Do 42.4795 \(⋮\) 42

=> xy + 10 \(⋮\) 42 (1)

Mà 0 \(\le\) xy \(\le\) 99

=> 10 \(\le\) xy +10 \(\le\) 109 (2)

Từ (1) + (2) => xy + 10 = 42 hoặc xy + 10 = 82

=> xy = 32 hoặc xy = 72

b)Ta có

\(\dfrac{a}{7}\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{b+1}\)

\(\dfrac{2a}{14}\) - \(\dfrac{7}{14}\) = \(\dfrac{1}{b+1}\)

\(\dfrac{2a-7}{14}\) = \(\dfrac{1}{b+1}\)

=> (2a - 7).(b+1) = 14

Mà a; b \(\in\) Z => 2a - 7; b + 1 \(\in\) Z

=> 2a - 7; b + 1 \(\in\) Ư(14)

2a - 7 \(⋮̸\) 2

Ta có bảng

a 2a - 7 b + 1 b So đk a;b \(\in\) Z
4 1 14 13 Tm
7 7 2 1 Tm
-4 -1 -14 -15 Tm
0 -7 -2 -3 Tm

Vậy cặp số (a;b) = (4;13) (7;1)

(-4;-15) (0;-3)


2 tháng 3 2017

Giải:

a) Ta có:

\(\overline{2014xy}⋮42\)

\(\Rightarrow201400+\overline{xy}⋮42\)

\(\Rightarrow42.4795+\overline{xy}+10⋮42\)

\(42.4795⋮42\Rightarrow\overline{xy}+10⋮42\) (1)

\(0\le\overline{xy}\le99\)

\(\Rightarrow10\le\overline{xy}+10\le109\) (2)

Từ (1) và (2)

\(\Rightarrow\left\{\begin{matrix}\overline{xy}+10=42\\\overline{xy}+10=84\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\overline{xy}=32\\\overline{xy}=74\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(3;2\right);\left(7;4\right)\)

b) Quy đồng các phân số \(\frac{a}{7};\frac{1}{2}\) ta có:

\(BCNN\left(7;2\right)=7.2=14\)

Ta có:

\(14\div7=2\)

\(14\div2=7\)

Vậy: \(\left\{\begin{matrix}\frac{a}{7}=\frac{a.2}{7.2}=\frac{2a}{14}\\\frac{1}{2}=\frac{1.7}{2.7}=\frac{7}{14}\end{matrix}\right.\)

\(\Rightarrow\frac{2a}{14}-\frac{7}{14}=\frac{2a-7}{14}=\frac{1}{b+1}\)

\(\Rightarrow b+1=14\)

\(\Rightarrow b=14-1\)

\(\Rightarrow b=13\)\((*)\)

Thay \((*)\) vào ta lại có:

\(\frac{2a-7}{14}=\frac{1}{13+1}=\frac{1}{14}\)

\(\Rightarrow2a-7=1\)

\(\Rightarrow2a=1+7\)

\(\Rightarrow2a=8\)

\(\Rightarrow a=\frac{8}{2}\)

\(\Rightarrow a=4\)

Vậy \(a=4;b=13\)

3 tháng 3 2017

Giải:

Theo đề bài ta có:

\(\frac{14}{15}\div\frac{a}{b}=\frac{14b}{75a}\in N\Rightarrow\left\{\begin{matrix}14⋮a\\b⋮75\end{matrix}\right.\)

\(\frac{6}{165}\div\frac{a}{b}=\frac{6b}{165a}\in N\Rightarrow\left\{\begin{matrix}6⋮a\\b⋮165\end{matrix}\right.\)

Để phân tối giản \(\frac{a}{b}\) lớn nhất

\(\Rightarrow\left\{\begin{matrix}a=ƯCLN\left(14;6\right)=2\\b=BCNN\left(75;165\right)=825\end{matrix}\right.\)

Vậy phân số tối giản \(\frac{a}{b}\) lớn nhất là \(\frac{2}{825}\)

3 tháng 3 2017

\(\dfrac{4}{75}\): \(\dfrac{a}{b}\) = \(\dfrac{4}{75}\) . \(\dfrac{b}{a}\)= \(\dfrac{4b}{75a}\)

=> b \(⋮\)75

\(\left[{}\begin{matrix}4⋮a\Rightarrow a\inƯ\left(4\right)\\b⋮a\Rightarrow b\in BC\left(75;a\right)\end{matrix}\right.\)

\(\dfrac{6}{165}\): \(\dfrac{a}{b}\) = \(\dfrac{6}{165}\) . \(\dfrac{b}{a}\)= \(\dfrac{6b}{165a}\)

=> b\(⋮\) 165

\(\left[{}\begin{matrix}6⋮a\Rightarrow a\inƯ\left(6\right)\\b⋮a\Rightarrow b\in BC\left(165;a\right)\end{matrix}\right.\)

để \(\dfrac{a}{b}\) lớn nhất thì a phải :

a \(\in\) UCLN(6;4) => a = 2

để \(\dfrac{a}{b}\) lớn nhất thì b phải :

b \(\in\) BCNN(75;2;165) => b=1650

=> \(\dfrac{a}{b}\) = \(\dfrac{2}{1650}\)

8 tháng 8 2017

Bài 3 :

a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)

\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)

\(\Leftrightarrow2A=\dfrac{672}{2019}\)

\(\Leftrightarrow A=\dfrac{336}{2019}\)

b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)

\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)

8 tháng 8 2017

1.

Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)

Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)

Để thỏa mãn hai điều kiện trên thì \(b=8\)

Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)

Vậy \(a=4;b=8\); số cần tìm là \(254898\)

15 tháng 5 2017

a) \(x\)=1 \(y\)= 12

b)\(x\)=4 \(y\)= 14

hoặc \(x\)= 6 \(y \)=21

...

19 tháng 2 2018

umk

16 tháng 4 2017

a) x.21=6.7

x.21=42

x=42:21

x = 2

b) y . 20 = -5.28

y.20 = -140

y = (-140) : 20

y = -7

21 tháng 4 2017

a)=>x*21=7*6

=>x*21=42

=>x=42/21

x=2

b)=>y*20=(-5)*28

=>y*20=-140

=>y=-140/20

y=-7

8 tháng 8 2017

\(\left(x-2\right)\left(y+3\right)=5\)

\(\Rightarrow x-2;y+3\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét ước

\(xy-6x-3y=7\)

\(\Rightarrow xy-6x-3y+18=25\)

\(\Rightarrow x\left(y-6\right)-3\left(y-6\right)=25\)

\(\Rightarrow\left(x-3\right)\left(y-6\right)=25\)

Xét ước

\(\dfrac{a}{2}-\dfrac{1}{b}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{b}=\dfrac{3}{4}+\dfrac{a}{2}\)

\(\Rightarrow\dfrac{1}{b}=\dfrac{3}{4}+\dfrac{2a}{4}\)

\(\Rightarrow\dfrac{1}{b}=\dfrac{3+2a}{4}\)

\(\Rightarrow b\left(3+2a\right)=4\)

Xét ước

2 tháng 5 2017

Bài 1:

a)

\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)

b)

\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)

c)

\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)

d)

\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)

e)

\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)

f)

\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)

g)

\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)

h)

\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)

i)

\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)