Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OKz
![](https://rs.olm.vn/images/avt/0.png?1311)
1. = [(x^2-2xy+y^2)+2.(x-y).2+4] - 9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3) = (x-y-1).(x-y+5)
2. Có : n^3+n+2 = (n^3+1)+(n+1) = (n+1).(n^2-n+1+1) = (n+1).(n^2-n+2)
Nếu n lẻ => n+1 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 => n^3+n+2 là hợp sô
Nếu n chẵn thì n^2 chia hết cho 2 => n^2-n+2 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 = >n^3+n+2 là hợp số
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a, Ta có : \(\left(x+3\right)^3=x\left(x-4\right)\)
=> \(x^3+9x^2+27x+27=x^2-4x\)
=> \(x^3+9x^2+27x+27-x^2+4x=0\)
=> \(x^3+8x^2+31x+27=0\)
=> \(x\approx-1,27\)
Vậy phương trình có tập nghiệm là \(S=\left\{~-1.27\right\}\)
b, Ta có : \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
=> \(\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\)
=> \(x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{6\left(x-3\right)}{30}=\frac{180}{30}-\frac{10\left(1-2x\right)}{30}\)
=> \(6\left(x-3\right)=180-10\left(1-2x\right)\)
=> \(6x-18=180-10+20x\)
=> \(-14x=188\)
=> \(x=-\frac{94}{7}\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{94}{7}\right\}\)
Bài 2 :
a, Ta có : \(x^2+4x-2xy-4y+y^2\)
= \(\left(x-y\right)^2+4\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y+4\right)\)
b, Ta có : \(x\left(x-4\right)+\left(x-4\right)\left(2x+3\right)\)
\(=\left(x-4\right)\left(x+2x+3\right)\)
= \(=\left(x-4\right)\left(3x+3\right)\)
c, Ta có : \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
= \(\left(x-1-y\right)\left(x-1+y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(=a^8+2a^4+1-a^4\)
\(=\left(a^4+1\right)^2-a^4\)
\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)
\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(x^2+4x-4y^2-8y\)
\(=x^2+2xy+4x-2xy-4y^2-8y\)
\(=x\left(x+2y+4\right)-2y\left(x+2y+4\right)\)
\(=\left(x-2y\right)\left(x+2y+4\right)\)
b)sai đề
c)sai đề tiếp
a)x2+4x-4y2-8y=(x2-4y2)+(4x-8y)
=(x+2y(x-2y)+4(x-2y)
=(x-2y)(x+2y+4)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7
2^n-1 | 1 | -1 | 7 | -7 |
n | X | X | 3 | X |
Vậy n=3 thì (2^n-1);7
![](https://rs.olm.vn/images/avt/0.png?1311)
a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3
= (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)
= -3xy(x+y) (do x+y+z=0)
Vì x+y+z=0 =>x+y=-z
=> -3xy(x+y)=3xyz
Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào
Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz
\(x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)
\(=\left(x-y+2\right)^2-9\)
\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)
\(=\left(x-y+5\right)\left(x-y-1\right)\)
a, = (x^2-2xy+y^2)+(4x-4y)-5
= (x-y)^2+4.(x-y)-5
= [(x-y)^2+4.(x-y)+4]-9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3)
= (x-y-1).(x-y+5)
b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2
Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2
Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2
Vậy A chia hết cho 2 với mọi n thuộc N sao
Mà n thuộc N sao nên n.(n^2+1)+2 > 2
=> A là hợp số hay n^3+n+2 là hợp số
=> ĐPCM
Tk mk nha