![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Học sinh tự vẽ tứ giác thỏa mãn điều kiện đề bài, chẳng hạn như tứ giác ABCD ở hình dưới có
AC = 6cm
BD = 3,6cm
AC ⊥⊥ BD
Có thể vẽ được vô số tứ giác theo yêu cầu từ đề bài:
AC = 6cm
BD = 3,6cm
AC ⊥⊥ BD tại I với I là điểm tùy ý thuộc đoạn AC và BD
Diện tích củ tứ giác vừa vẽ:
SABCD = 1212 AC. BD = 1212 6. 3,6 = 10,8 (cm2)
b) Diện tích hình vuông có độ dài đường chéo là d
Hình vuông có hai đường chéo bằng nhau và vuông góc với nhau, nên diện tích là:
S = 1212 d.d = 1212 d2
tứ giác ABCD ở hình dưới có
AC = 6cm
BD = 3,6cm
AC ⊥⊥ BD
Có thể vẽ được vô số tứ giác theo yêu cầu từ đề bài:
AC = 6cm
BD = 3,6cm
AC ⊥⊥ BD tại I với I là điểm tùy ý thuộc đoạn AC và BD
Diện tích củ tứ giác vừa vẽ:
SABCD = 1212 AC. BD = 1212 6. 3,6 = 10,8 (cm2)
b) Diện tích hình vuông có độ dài đường chéo là d
Hình vuông có hai đường chéo bằng nhau và vuông góc với nhau, nên diện tích là:
S = 1212 d.d = 1212 d2
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Có thể vẽ được vô số tứ giác theo yêu cầu từ đề bài. Chẳng hạn tứ giác ABCD ở hình trên.
Ta có: AC = 6cm, BD = 3,6cm và AC ⊥ BD.
Diện tích tứ giác ABCD là:
Mà AC = 6cm ; BD = 3,6 cm nên
b) Hình vuông có 2 đường chéo vuông góc nên theo công thức trên, diện tích của nó là:
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=a^2+b^2+M\)
\(S_{ABCD}\)nhỏ nhất khi M nhỏ nhất
BĐT Cosi \(\left(S_{AOD}+S_{BOC}\right)^2\ge4\cdot S_{AOD}\cdot S_{BOC}\)
\(\Rightarrow\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}\cdot S_{BOC}\)(*)
Dấu "=" khi và chỉ khi SAOD=SBOC
Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao kẻ từ A => \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\left(1\right)\)
Tương tự với \(\Delta COD\)và \(\Delta COB\)=> \(\frac{S_{COB}}{S_{COD}}=\frac{OB}{OD}\left(2\right)\)
Từ (1) và (2) => \(\frac{S_{AOB}}{S_{AOD}}=\frac{S_{COB}}{S_{COD}}\)
\(\Rightarrow S_{AOD}\cdot S_{BOC}=S_{AOB}\cdot S_{COD}=a^2b^2\)
Khi đó (*) => \(\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\frac{S_{AOD}+S_{BOC}}{a}\ge2\left|a\right|\left|b\right|\)
\(\Rightarrow S_{ABCD}=a^2+b^2+M\ge a^2+b^2+2\left|a\right|\left|b\right|=\left(\left|a\right|+\left|b\right|\right)^2\)
Vậy SABCD nhỏ nhất =(|a|+|b|)2 <=> SAOD=SBOC