
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Để A=0 thì x+1=0
hay x=-1
b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)
Để B=0 thi (x-2)(x+2)=0
=>x=2 hoặc x=-2

Lời giải:
ĐKXĐ: \(x\neq \left\{2;\pm 3\right\}\)
a) Ta có:
\(P=\left(\frac{x^2-3x}{x^2-9}-1\right):\left(\frac{9-x^2}{x^2+x-6}-\frac{x-3}{2-x}-\frac{x-2}{x+3}\right)\)
\(P=\left(\frac{x(x-3)}{(x-3)(x+3)}-1\right):\left(\frac{(3-x)(3+x)}{(x-2)(x+3)}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)
\(P=\left(\frac{x}{x+3}-1\right):\left(\frac{3-x}{x-2}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)
\(P=\frac{x-(x+3)}{x+3}:\left(-\frac{x-2}{x+3}\right)=\frac{-3}{x+3}.\frac{x+3}{-(x-2)}=\frac{3}{x-2}\)
b) \(x^3-3x+2=0\)
\(\Leftrightarrow (x^3-x)-2(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-2(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-2)=0\)
\(\Leftrightarrow (x-1)[(x^2-1)+(x-1)]=0\)
\(\Leftrightarrow (x-1)^2(x+2)=0\) \(\Leftrightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)
Với \(x=1\Rightarrow P=\frac{3}{1-2}=-3\)
Với \(x=-2\Rightarrow P=\frac{3}{-2-2}=\frac{-3}{4}\)
c)
\(P=\frac{3}{x-2}\in\mathbb{Z}\Leftrightarrow 3\vdots x-2\)
\(\Leftrightarrow x-2\in \text{Ư}(3)\Rightarrow x-2\in\left\{\pm 1; \pm 3\right\}\)
\(\Leftrightarrow x\in \left\{3,1,5,-1\right\}\)
Do \(x\neq 3\Rightarrow x\in \left\{-1,1,5\right\}\)

Cách khác:
Áp dụng BĐT AM-GM:
\(\frac{a}{b^2}+\frac{1}{a}\geq 2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)
\(\frac{b}{c^2}+\frac{1}{b}\geq 2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)
\(\frac{c}{a^2}+\frac{1}{c}\geq 2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)
Cộng theo vế và rút gọn:
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x|=1/3 thì x=1/3 hoặc x=-1/3
Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)
Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)
c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2
d: Để Q=4 thì x^2=4x-4
=>x=2

\(A=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(=0\)
<><><>
\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)
\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)
\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)
\(=-1\)
<><><>
\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)
\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)
\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)
\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)
\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)
\(=0\)

a) Rút gọn :
P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)
\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)
\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)
b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)
* TH1 : x \(\ge0\)
\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)
* TH2 : x < 0
\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)
c) Để P = \(\dfrac{-1}{2}\) thì :
\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x+8=3-x\)
\(\Leftrightarrow2x+x=-8+3\)
\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)
d) P \(\le\) 2
<=> \(\dfrac{x+4}{x-3}\le2\)
\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)
\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)
Lập bang xét dấu và tìm x nhé!!

đkxđ: x\(\ne\pm3\)
a/ \(P=\left(\dfrac{x}{x+3}-\dfrac{x^2+5}{x^2-9}+\dfrac{7}{x-3}\right)\cdot\dfrac{x+3}{4}=\left(\dfrac{x\left(x-3\right)-x^2-5+7\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x+3}{4}=\dfrac{x^2-3x-x^2-5+7x+21}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{4}=\dfrac{4x+16}{x-3}\cdot\dfrac{1}{4}=\dfrac{4\left(x+4\right)}{4\left(x-3\right)}=\dfrac{x+4}{x-3}\)
b/ tại x = 5 thì:
\(P=\dfrac{5+4}{5-3}=\dfrac{9}{2}\)
c/ Ta có: \(\dfrac{x+4}{x-3}=\dfrac{x-3+7}{x-3}=\dfrac{x-3}{x-3}+\dfrac{7}{x-3}=1+\dfrac{7}{x-3}\)
để P ∈ Z thì \(\dfrac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)\)
=> x - 3 = {-7;-1;1;7}
=> x = {-4;2;4;10}
Vậy.............
\(ĐK:x\ne3\\ a,\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1+2=3\left(ktm\right)\\x=-1+2=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\\ \Leftrightarrow A=\dfrac{1}{1-3}=-\dfrac{1}{2}\\ b,A=\dfrac{x-3+3}{x-3}=1+\dfrac{3}{x-3}\in Z\\ \Leftrightarrow x-3\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{0;2;4;6\right\}\)
ĐKXĐ: \(x\ne3\)
a) \(\left|x-2\right|=1\)\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
\(A=\dfrac{x}{x-3}=\dfrac{1}{1-3}=-\dfrac{1}{2}\)
b) \(A=\dfrac{x-3+3}{x-3}=1+\dfrac{3}{x-3}\in Z\)
\(\Rightarrow\left(x-3\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{0;2;4;6\right\}\)