\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2015}{2017}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2015}{4034}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2015}{4034}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

=>x+1=2017

hay x=2016

1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{2}{2}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> \(\dfrac{1.2}{1.2}\) + \(\dfrac{1.2}{2.3}\) + \(\dfrac{1.2}{3.4}\) + \(\dfrac{1.2}{4.5}\) + ... + \(\dfrac{1.2}{x\left(x+1\right)}\) = 1\(\dfrac{2015}{2017}\)

=> 2(\(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{x\left(x+1\right)}\)) = 1\(\dfrac{2015}{2017}\)

=> 2(1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\)) = 1\(\dfrac{2015}{2017}\)

=> 2(1 - \(\dfrac{1}{x+1}\)) = \(\dfrac{4032}{2017}\)

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{4032}{2017}\) : 2

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{2016}{2017}\)

=> \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{2016}{2017}\)

=> \(\dfrac{1}{x+1}\) = \(\dfrac{1}{2017}\)

=> x + 1 = 2017

=> x = 2017 - 1

=> x = 2016

9 tháng 4 2018

Hay bay!!! haha

2 tháng 5 2017

a) \(\left(2x-3\right)\left(6-2x\right)=0\)

\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)

\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)

Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).

b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)

\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)

\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)

\(-\dfrac{11}{15}=-x\left(x-1\right)\)

\(\Rightarrow x=1.491631652\)

Vậy \(x=1.491631652\)

c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)

\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)

\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)

Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).

d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)

Vậy \(x=\dfrac{10}{3}\).

e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)

\(\dfrac{x}{3}=\dfrac{7}{10}\)

\(x=\dfrac{3\cdot7}{10}\)

\(x=\dfrac{21}{10}\)

Vậy \(x=\dfrac{21}{10}\).

f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)

\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)

\(\dfrac{x}{5}=\dfrac{11}{10}\)

\(x=\dfrac{5\cdot11}{10}\)

\(x=\dfrac{55}{10}=\dfrac{11}{2}\)

Vậy \(x=\dfrac{11}{2}\).

g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)

Vậy \(x=2\).

h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)

Vậy \(x=14\).

7 tháng 5 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2017}{2019}\\ \Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2017}{2019}\\ \Rightarrow2.\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2017}{2019}\\ \Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2017}{4038}\\ \Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2019}\\ \Rightarrow x=2018\)

9 tháng 7 2017

Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)

\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)

Nên:

\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)

Vậy A = 1

Chúc bạn học tốt!!

10 tháng 7 2017

siêu ghê :))

25 tháng 7 2017

a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)

<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)

<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)

<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)

<=>\(4x-17=0\)

<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)

6 tháng 5 2018

\(\dfrac{1}{7}=\dfrac{8}{-x}\)=> \(-x=56\)

=> \(x=56\)

2) => 18x = 18

=> x = 1

3) \(\dfrac{-4}{3}+x=\dfrac{-11}{6}\)

=> \(x=\dfrac{-11}{6}+\dfrac{4}{3}\)

=> \(x=\dfrac{-1}{2}\)

4) 45%.x =\(\dfrac{3}{5}\)

=> \(x=\dfrac{3}{5}:\dfrac{9}{20}\)

=> \(x=\dfrac{4}{3}\)

9 tháng 4 2017

a) \(\dfrac{2}{3}x-\dfrac{3}{2}x=\dfrac{5}{12}\)

\(-\dfrac{5}{6}x=\dfrac{5}{12}\)

\(x=-\dfrac{1}{2}\)

b) \(\dfrac{2}{5}+\dfrac{3}{5}\cdot\left(3x-3.7\right)=-\dfrac{53}{10}\)

\(\dfrac{3}{5}\left(3x-3.7\right)=-\dfrac{57}{10}\)

\(3x-3.7=-\dfrac{19}{2}\)

\(3x=-5.8\)

\(x=-\dfrac{29}{15}\)

c) \(\dfrac{7}{9}:\left(2+\dfrac{3}{4}x\right)+\dfrac{5}{9}=\dfrac{23}{27}\)

\(\dfrac{7}{9}:\left(2+\dfrac{3}{4}x\right)=\dfrac{8}{27}\)

\(2+\dfrac{3}{4}x=\dfrac{21}{8}\)

\(\dfrac{3}{4}x=\dfrac{5}{8}\)

\(x=\dfrac{5}{6}\)

d) \(-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{3}{10}\)

\(-\dfrac{2}{3}x=\dfrac{1}{10}\)

\(x=-\dfrac{3}{20}\)

9 tháng 4 2017

\(\dfrac{2}{3}x-\dfrac{3}{2}x=\dfrac{5}{12}\)

\(\left(\dfrac{2}{3}-\dfrac{3}{2}\right)x=\dfrac{5}{12}\)

\(\dfrac{-5}{6}.x=\dfrac{5}{12}\)

-> x = \(\dfrac{-1}{2}\)

Câu 1: Tính a) \(\left|-5\right|\) b) \(\left|10\right|\) c) \(\left|-5\right|-\left|10\right|\) d) \(\left(-15\right).30\) Câu 2: Tính (Tính hợp lí nếu có thể) a) \(\dfrac{10}{21}.\dfrac{14}{25}\) b) \(\left(-1.08-\dfrac{2}{5}\right):\dfrac{4}{7}\) c) \(-\dfrac{5}{6}+\dfrac{3}{4}\) d) \(\dfrac{11}{17}.\dfrac{3}{2017}+\dfrac{11}{17}.\dfrac{2014}{2017}-1\dfrac{11}{17}\) Câu 3: Ba đội công nhân có tất...
Đọc tiếp

Câu 1: Tính

a) \(\left|-5\right|\) b) \(\left|10\right|\) c) \(\left|-5\right|-\left|10\right|\) d) \(\left(-15\right).30\)

Câu 2: Tính (Tính hợp lí nếu có thể)

a) \(\dfrac{10}{21}.\dfrac{14}{25}\) b) \(\left(-1.08-\dfrac{2}{5}\right):\dfrac{4}{7}\) c) \(-\dfrac{5}{6}+\dfrac{3}{4}\) d) \(\dfrac{11}{17}.\dfrac{3}{2017}+\dfrac{11}{17}.\dfrac{2014}{2017}-1\dfrac{11}{17}\)

Câu 3: Ba đội công nhân có tất cả 192 người. Số người đội I chiếm \(\dfrac{1}{4}\) tổng số. Số người đội II bằng 125% đội I. Tính số người đội III.

Câu 4: Trong vườn bác An có tổng cộng 120 cây ăn quả gồm ba loại là cây chanh,cây cam và cây quýt. Số cây chanh chiếm 50% số cây cả vườn, số cây cam chiếm \(\dfrac{2}{3}\) số cây còn lại. Em hãy tính số cây mỗi lại.

Câu 5: Tính:

a) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}\)

b) \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2017}-1\right)\)

c) \(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\)

Câu 6: Tìm số nguyên n để các phân số sau là số nguyên:

a) \(\dfrac{5}{n+1}\) b) \(\dfrac{n-6}{n+1}\) c) \(\dfrac{2n+7}{n+1}\) ( Làm theo dạng kẻ bảng )

Câu 7: Cho \(A=\dfrac{x-1}{x+2}\) (với số x là số nguyên)

a) Tìm x để A có nghĩa b) Tìm x biết A = 2 c) Tìm giá trị nhỏ nhất của A

2
9 tháng 6 2017

Câu 1:

a, \(\left|-5\right|=5\)

b, \(\left|10\right|=10\)

c, \(\left|-5\right|-\left|10\right|=5-10=-5\)

d, -15.30= -450

Câu 2:

a, Ta có: \(\dfrac{10}{21}.\dfrac{14}{25}=\dfrac{10.14}{21.25}=\dfrac{5.2.7.2}{3.7.5.5}=\dfrac{2.2}{3.5}=\dfrac{4}{15}\)

c, Ta có: \(-\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{-5.2+3.3}{12}=\dfrac{-10+9}{12}=\dfrac{-1}{12}\)

d, \(\dfrac{11}{17}.\dfrac{3}{2017}+\dfrac{11}{17}.\dfrac{2014}{2017}-1\dfrac{11}{17}=\dfrac{11}{17}\left(\dfrac{3}{2017}+\dfrac{2014}{2017}\right)-1\dfrac{11}{17}\)

\(=\dfrac{11}{17}.\dfrac{2017}{2017}-1\dfrac{11}{17}=\dfrac{11}{17}-1-\dfrac{11}{17}=-1\)

9 tháng 6 2017

Câu 7: a, Để A có nghĩa khi \(x+2\ne0\) \(\Leftrightarrow x=-2\)

b, Ta có: \(A=2\)

<=> \(\dfrac{x-1}{x+2}=2\)

<=> \(\dfrac{x-1}{x+2}-2=0\)

<=> \(\dfrac{x-1}{x+2}-\dfrac{2x+4}{x+2}=0\)

<=> \(\dfrac{x-1-2x-4}{x+2}=0\)

<=> \(\dfrac{-x-5}{x+2}=0\)

<=> -x-5=0

<=> -x=5

<=> x= -5