Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xem lại thiếu cái đk gì đó
b) thích chọn số nào tùy
\(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có a / b < c / d khi ad < bc (1)
Thêm ab vào 2 vế của (1), ta có: ad+ab <bc+ab
a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c) (2)
Thêm cd vào 2 vế của (1), ta có: ad +cd<bc+cd
d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d (3)
Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này mk làm rồi, giờ giải lại à
Vì b,d>0 nênb+d>0
Ta có: a/b<c/d=>ad<bc(*)
Thêm ab vào 2 vế(*), ta được: ab+ad<ab+bc
=>a(b+d)<(a+c)b
=>a/b<a+c/b+d(1)
Thêm cd vào 2 vế (*), ta được: ad+cd<bc+cd
=>(a+c)d<(b+d)c
=>a+c/b+d<c/d(2)
Từ 1,2 => Nếu a/b<c/d thì a/b<a+c/b+d<c/d
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Từ ad < bc
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48}< -\frac{14}{48}< -\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)
Vậy 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)là \(-\frac{15}{48};-\frac{14}{48};-\frac{13}{48}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì \(\frac{a}{b}< \frac{c}{d}\) và \(b.d>0\) nên suy ra \(ad< bc\).
Tách bất đẳng thức kép cần chứng minh thành 2 bất đảng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) và \(\frac{a+c}{b+d}< \frac{c}{d}\)
Ta cần chứng minh:
\(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\) (do b, d > 0)
\(\Leftrightarrow ab+ad< ab+cb\)
\(\Leftrightarrow ad< cb\)
Bất đẳng thức cuối đúng nên bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) đúng.
Ta cần chứng minh tiếp:
\(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Leftrightarrow\left(a+c\right)d< c\left(b+d\right)\) do b.d > 0
\(\Leftrightarrow ad+cd< cb+cd\)
\(\Leftrightarrow ad< cb\)
Bất đẳng thức cuối đúng do giả thiết.
Vậy bài toán được chứng minh
b) Áp dụng câu a ta có:
Từ \(\frac{-1}{3}< \frac{-1}{4}\) => \(\frac{-1}{3}< \frac{-1-1}{3+4}< \frac{-1}{4}\)
Ta lấy phân số xen giữa là \(-\frac{2}{7}\) và ta có: \(\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)
Áp dụng tiếp kết quả câu a ta được:
\(\frac{-1}{3}< \frac{-1-2}{3+7}< \frac{-2}{7}< \frac{-2-1}{7+4}< \frac{-1}{4}\)
Hay là:
\(\frac{-1}{3}< \frac{-3}{10}< \frac{-2}{7}< \frac{-3}{11}< \frac{-1}{4}\)
Và 3 phân số xen giữa là: \(-\frac{3}{10};-\frac{2}{7};-\frac{3}{11}\)
a, Ta chứng minh: \(\frac{a}{b}< \frac{a+c}{b+d}\), biết \(\frac{a}{b}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cd}{bd}\)vì \(b>0;d>0\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\Rightarrow ab+d< ba+c\Rightarrow\frac{a+c}{b+d}\)
Tương tự: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\). Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b, \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48};\frac{-14}{48};\frac{-13}{48}< \frac{-12}{48}=\frac{-1}{4}\)
Vậy 3 số hữu tỉ đó là: \(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có \(\frac{a}{b}< \frac{c}{d}\)Nhân 2 vế cho b.d>0\(\Rightarrow\frac{abd}{b}< \frac{cbd}{d}\Leftrightarrow ad< bc\)(1)
+) Cộng 2 của (1) vế cho ab: \(ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
Chia 2 vế cho b(b+d)>0: \(\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
+) Cộng 2 vế của (1) cho cd: \(cd+ad< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
Chia 2 vế cho d(b+d)>0: \(\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy ...............
b) Xét \(\frac{-1}{3}=\frac{-4}{12}\)và \(\frac{-1}{4}=\frac{-4}{16}\)
----> 3 số hữu tỉ ở giữa là \(\frac{-4}{13},\frac{-4}{14},\frac{-4}{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cái này bạn tích chéo lên là ra chứ có gì đâu ( dựa vào ad<bc)
mình đang hỏi bài này mà