Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Giả sử phân số \(\frac{6n-7}{n-1}\) chưa tối tối giản
=> 6n -7 và n - 1 có ước chung là số nguyên tố
Gọi d = ƯC(6n - 7; n - 1)
\(\Leftrightarrow\hept{\begin{cases}6n-7⋮d\\n-1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6n-7⋮d\\6n-6⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(6n-7;n-1\right)=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\dfrac{15}{48}=\dfrac{5}{16}\)
\(\dfrac{5}{16}=\dfrac{10}{32}=\dfrac{20}{64}=\dfrac{25}{90}=\dfrac{30}{96}\)
Vậy B là tập hợp gồm các phần tử trên
![](https://rs.olm.vn/images/avt/0.png?1311)
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
a: Gọi d=UCLN(6n-7;n-1)
\(\Leftrightarrow6n-7-6n+6⋮d\)
\(\Leftrightarrow-1⋮d\)
=>d=1
Do đó: \(\dfrac{6n-7}{n-1}\) là phân số tối giản
b: \(\dfrac{20}{48}=\dfrac{5}{12}=\dfrac{10}{24}=\dfrac{15}{36}=\dfrac{25}{60}=\dfrac{30}{72}=\dfrac{35}{84}=\dfrac{40}{96}\)