
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)
\(A_{max}=3\) khi \(cosx=1\)
\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)
\(B_{max}=-1\) khi \(sinx=-1\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)
\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)
\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)
\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)

\(cotx\left(\frac{1+sin^2x}{cosx}-cosx\right)=\frac{cosx}{sinx}\left(\frac{1+sin^2x-cos^2x}{cosx}\right)=\frac{cosx}{sinx}.\frac{2sin^2x}{cosx}=2sinx\)

\(sin^4x=\left(sin^2x\right)^2=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}cos4x\right)\)
\(=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

Câu đầu ko dịch được đề, lỗi kí tự rồi bạn
b/
\(\Leftrightarrow2cos^6x+sin^4x+2cos^2x-1=0\)
\(\Leftrightarrow2cos^2x\left(cos^4x+1\right)+\left(sin^2x-1\right)\left(sin^2x+1\right)=0\)
\(\Leftrightarrow cos^2x\left(2cos^4x+2\right)-cos^2x\left(sin^2x+1\right)=0\)
\(\Leftrightarrow cos^2x\left(2cos^4x+1-sin^2x=0\right)\)
\(\Leftrightarrow cos^2x\left(2cos^4x+cos^2x\right)=0\)
\(\Leftrightarrow cos^4x\left(2cos^2x+1\right)=0\)
\(\Leftrightarrow cos^4x=0\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=\frac{\pi}{2}+k\pi\)

Giả sử các biểu thức đều xác định
a/
\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)
b/
\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)
c/
\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)
d/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)
\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)

3. a, P = 2 sinx ( cos x + cos 3x + cos 5x)
= 2 sinx . [ 2.cos3x.cos (-2x) + cos 3x]
= 2 sinx . [ cos 3x ( cos 2x + 1)]
= 2 sinx cos 3x . (2 cos x - 1 + 1)
= 4 sinx . cos x .cos 3x = 2 . sin2x .cos 3x
#mã mã#
Em học lớp 9 nên giúp được câu 2 thôi nha :)
\(pt:x^2-mx+m+8=0\)
\(\Delta=\left(-m\right)^2-4\left(m+8\right)=m^2-4m+32=\left(m-2\right)^2+28>0\forall m\)
⇒ pt luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m+8\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt cùng âm thì:
\(\left\{{}\begin{matrix}\Delta>0\left(TM\right)\\P>0\\S< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m+8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m>-8\end{matrix}\right.\Leftrightarrow-8< m< 0\)