Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\overrightarrow{MA}=\left(1-x_M;-1\right)\)
\(\overrightarrow{MB}=\left(3-x_M;0\right)\)
Để ΔMAB vuông tại M thì \(\left(1-x_M\right)\left(3-x_M\right)-1=0\)
=>xM=2

1 -3 A -5 3 B 2 -2 C M
a) Gọi điểm M(x,0). Ta có MA = MB
=> MA2 = MB2
=> (1 - x)2 + (-3 - 0)2 = (3 - x)2 + (-5 - 0)2
1 - 2x + x2 + 9 = 9 - 6x + x2 + 25
4x = 24
x = 6
Vậy điểm M(6, 0)
b) Gọi N(0, y), ta có NA vuông góc với AB
=> Tích vô hướng giữa hai vector AN và vector AB bằng 0
=> (0 - 1, y + 3) . (3 - 1, -5 + 3) = 0
-2 - 2(y + 3) = 0
y = -4
Vậy N(0, -4)

Chắc bạn viết thiếu trị tuyệt đối, đề đúng của bài có dấu trừ người ta phải luôn cho là \(\left|MB-MA\right|\)
Gọi M là điểm bất kì trên Oy, áp dụng BĐT tam giác ta có:
\(\left|MB-MA\right|\le AB\Rightarrow\left|MB-MA\right|_{max}\) khi M;A;B thẳng hàng
Gọi \(M\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;2\right)\\\overrightarrow{AM}=\left(-4;y-1\right)\end{matrix}\right.\)
\(\Rightarrow\frac{-4}{-1}=\frac{y-1}{2}\Rightarrow y-1=8\Rightarrow y=9\Rightarrow M\left(0;9\right)\)

a: vì M nằm trên trục Ox nên M(x;0)
\(\overrightarrow{MA}=\left(x_A-x_M;y_A-y_M\right)=\left(-3-x_M;2\right)\)
\(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(4-x_M;3\right)\)
Ta có: ΔMAB vuông tại M
nên \(\overrightarrow{MA}\cdot\overrightarrow{MB}=0\)
\(\Leftrightarrow\left(-3-x_M\right)\left(4-x_M\right)+6=0\)
\(\Leftrightarrow\left(x_M+3\right)\left(x_M-4\right)+6=0\)
\(\Leftrightarrow x_M^2-x_M-6=0\)
=>xM=3

Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-1-x;4\right)\\\overrightarrow{MB}=\left(1-x;-2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}=\left(1-3x;0\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\sqrt{\left(1-3x\right)^2}\ge0\)
Dấu "=" xảy ra khi \(x=\frac{1}{3}\Rightarrow M\left(\frac{1}{3};0\right)\)
Gọi \(P\left(0;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PA}=\left(-1;4-y\right)\\\overrightarrow{PB}=\left(1;-2-y\right)\\\overrightarrow{PC}=\left(3;4-y\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{PA}+2\overrightarrow{PB}-4\overrightarrow{PC}=\left(-11;5y-16\right)\)
\(\Rightarrow\left|\overrightarrow{PA}+\overrightarrow{PB}-4\overrightarrow{PC}\right|=\sqrt{11^2+\left(5y-16\right)^2}\ge11\)
Dấu "=" xảy ra khi \(5y-16=0\Rightarrow y=\frac{16}{5}\Rightarrow P\left(0;\frac{16}{5}\right)\)
Ta có
a) \(M\in Ox\Rightarrow M\left(x;0\right)\)
\(\overrightarrow{AM}=\left(x+1;2\right)\Rightarrow AM=\sqrt{x^2+2x+5}\Rightarrow AM^2=x^2+2x+5\)
\(\overrightarrow{BM}=\left(x-4;-1\right)\Rightarrow BM=\sqrt{x^2-8x+17}\Rightarrow BM^2=x^2-8x+17\)
Vì AM = BM nên \(AM^2=BM^2\)
\(\Leftrightarrow x^2+2x+5=x^2-8x+17\Leftrightarrow10x=12\Leftrightarrow x=\frac{6}{5}\)
Vậy \(M\left(\frac{6}{5};0\right)\)
b) \(N\in Oy\Rightarrow N\left(0;y\right)\)
\(\overrightarrow{NA}=\left(-1;-2-y\right)\)
\(\overrightarrow{NB}=\left(4;1-y\right)\)
Vì \(\Delta ABN\) vuông tại N
\(\Rightarrow\overrightarrow{NA}.\overrightarrow{NB}=0\Leftrightarrow\left(-1\right)\times4+\left(-2-y\right)\left(1-y\right)=0\Leftrightarrow y^2+y-6=0\Leftrightarrow y=3;y=-2\)
Vậy \(N\left(0;3\right)\) hoặc \(N\left(0;-2\right)\)