
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(5x^4y+10x^3y+10x^2y^3+5xy^4\)
\(=5xy.x^3+5xy.2x^3+5xy.2xy^3+5xy.y^3\)
\(=5xy\left(x^3+2x^3+2xy^3+y^3\right)\)
Ht pt

\(a.\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8.\)
\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=5\)
\(\Leftrightarrow x=-\frac{5}{4}\)
\(b.\left(3x-5\right)\left(7-5x\right)+\left(5x-2\right)\left(3x-2\right)-2=0\)
\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
\(\Leftrightarrow x=\frac{41}{42}\)

\(x^4+5x^3+10x^2+5x-21=0\)
\(\Leftrightarrow x^4-x^3+6x^3-6x^2+16x^2-16x+21x-21=0\)
\(\Leftrightarrow x^3\left(x-1\right)+6x^2\left(x-1\right)+16x\left(x-1\right)+21\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+6x^2+16x+21\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+3x^2+9x+21\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+3\right)+3x\left(x+3\right)+9\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x^2+3x+9\right)=0\)
<=> x-1=0 <=> x=1
x+3=0 <=> x=-3
\(x^2+3x+9=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{27}{4}=\left(x+\frac{3}{2}\right)^2+\frac{27}{4}>0\)
vậy nghiệm của pt là x=1; x=-3


\(=\frac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}.\frac{5\left(x-1\right)}{3\left(x+1\right)}=\frac{x\left(x+1\right).5\left(x-1\right)}{5\left(x-1\right)^2.3\left(x+1\right)}=\frac{x}{3x-3}\)
\(\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\)
=\(\frac{x\left(x+1\right)}{5\left(x^2-2+1\right)}:\frac{3\left(x+1\right)}{5\left(x-1\right)}\)
=\(\frac{x\left(x+1\right)}{5\left(x-1\right)^2}:\frac{3\left(x+1\right)}{5\left(x-1\right)}\)
=\(\frac{x\left(x+1\right)}{5\left(x-1\right)^2}\cdot\frac{5\left(x-1\right)}{3\left(x+1\right)}\)
=\(\frac{x}{3\left(x-1\right)}\)

`-10x(2-x)-5x(x+2)=5x(x+3)`
`<=> -20x + 10x^2 - 5x^2 - 10x = 5x^2 +15x`
`<=> 5x^2 - 30x = 5x^2 + 15x`
`<=> -30x = 15x`
`<=> -45x = 0`
`<=> x = 0`
Vậy `S = {0}`
\(-10x\left(2-x\right)-5x\left(x+2\right)=5x\left(x+3\right)\)
\(\text{⇔}10x\left(x-2\right)+5x\left(x-2\right)=-5x\left(x-3\right)\)
\(\text{⇔}\left(x-2\right)\left(10x+5x\right)=-5x\left(x-3\right)\)
\(\text{⇔}15x\left(x-2\right)=-5x^2+15\)
\(\text{⇔}15x^2-30=-5x^2+15\)
\(\text{⇔}15x^2+5x^2=30+15\)
\(\text{⇔}20x^2=45\)
\(\text{⇔}x=\sqrt{\dfrac{45}{20}}=\dfrac{3}{2}\)
Vậy: \(x=\dfrac{3}{2}\)
=5x.x^2-5x.2x+5x.1 =5x(x^2-2x+1)