
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a ) x +5 = -10
x = -10 -5
x = - 15
b) x - ( - 10 ) = 5
x = 5+(-10)
x = -5
c) \(\left|x\right|\) -5 = 3
\(\left|x\right|=8\)
x ϵ { -8 ; 8 }
d) 15 - ( - x ) = 20
Không có số tự nhiên x nào mà 15 ( - x ) = 20
e ) \(\left|x-4\right|=3-\left(-7\right)\\ \left|x-4\right|=10\\ \left|x\right|=14\\ x\in\left\{\pm14\right\}\)
f ) \(\left|x+5\right|=10-\left(-20\right)\\ \left|x+5\right|=30\\ \left|x\right|=25\\ x\in\left\{\pm25\right\}\)

Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............

a) \(\left(x-1\right):3=2^3\) \(\Leftrightarrow\) \(\left(x-1\right):3=8\) \(x+1=24\) \(\Leftrightarrow\) \(x=23\) vậy \(x=23\)
b) \(12-2\left(x+5\right)=-10\) \(\Leftrightarrow\) \(12-2x-10=-10\)
\(\Leftrightarrow\) \(-2x=-12\) \(\Leftrightarrow\) \(x=6\) vậy \(x=6\)
c) \(x-12\left(x+5\right)=-10\) \(\Leftrightarrow\) \(x-12x-60=-10\)
\(\Leftrightarrow\) \(-11x=50\) \(\Leftrightarrow\) \(x=\dfrac{50}{-11}\) vậy \(x=\dfrac{50}{-11}\)
e) \(13-x:2=10\Leftrightarrow-x:2=-3\Leftrightarrow x=\dfrac{3}{2}\)
f) \(\left|12-x\right|-7=5\)
th1 : \(x\le12\) thì \(\left|12-x\right|-7=5\) \(\Leftrightarrow\) \(12-x-7=5\) \(\Leftrightarrow\) \(-x=0\Leftrightarrow x=0\)
th2 : \(x>12\) thì \(\left|12-x\right|-7=5\) \(\Leftrightarrow\) \(x-12-7=5\) \(\Leftrightarrow\) \(x=24\) vậy \(x=0;x=24\)
i) \(x^2-7=2\Leftrightarrow x^2=9\Leftrightarrow x=3\) vậy \(x=3\)
k) \(x^3-4=-12\) \(\Leftrightarrow\) \(x^3=-8\) \(\Leftrightarrow x=-2\) vậy \(x=-2\)
a)\(\left(x-1\right):3=2^3\Rightarrow x-1=2^3.3=24\Rightarrow x=25\)
b)\(12-2\left(x+5\right)=-10\Leftrightarrow12-2x-10=-10\Rightarrow2-2x=-10\Rightarrow2x=12\Rightarrow x=6\)c)\(x-12\left(x+5\right)=-10\Rightarrow x-12x-60=-10\Rightarrow-11x-60=-10\Rightarrow-11x=-70\Rightarrow x=\dfrac{70}{-11}\)d)\(6-\left|x\right|=5\Rightarrow\left|x\right|=1\Rightarrow x=\left\{\pm1\right\}\)
Làm nốt nha

Bài 1
a.\(\frac{-3}{4}\)-y:\(\frac{1}{5}\)=\(\frac{9}{28}\)
y:\(\frac{1}{5}\)=\(\frac{-15}{14}\)
y= \(\frac{-3}{14}\)
b.5x + 5x+2=650
5x . 1 + 5x + 52=650
5x(1+25)=650
5x.26=650
5x=25
x=2

lúc đầu ý bn là 5/1.3 đúng k, mk chỉnh lại như thế cho tiện nhé
a) \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times101}\)
\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\frac{100}{101}=\frac{250}{101}\)
b) \(\frac{3^2}{8\times11}+\frac{3^2}{11\times14}+\frac{3^2}{14\times17}+...+\frac{3^2}{197\times200}\)
\(=\frac{9}{8\times11}+\frac{9}{11\times14}+\frac{9}{14\times17}+...+\frac{9}{197\times200}\)
\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)
\(=3\times\frac{3}{25}=\frac{9}{25}\)
Ta có \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)
\(\Rightarrow3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)
\(\Rightarrow9.\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(\Rightarrow3.\left(1-\frac{1}{200}\right)\)
\(\Rightarrow3.\frac{199}{200}=\frac{597}{200}\)

A = 0
B > 1
=)) A < B
T ik nha bạn =))
Chúc bạn học tốt nhé !!!

a)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{58}.7\)
\(=7\left(2+2^4+2^{58}\right)⋮7\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15\left(2+2^5+2^{57}\right)⋮15\)
b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{96}.31\)
\(=31\left(1+5^3+...+5^{96}\right)⋮31\)
m có bị ng* ko
cút xuống c1 đi