Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Tứ giác DPQM là hình chứ nhật vì có 3góc vuông ( D = Q = P= 90 độ)
b, Để DPMQ là hình vuông thì DM là tia pg của D.
Vậy Mlà giao tỉa pg góc D và EF để DPMQ là hình vuông.
c, Ta có: Góc MDP và HDP đối xứng qua DE nên MDP = HDP
Góc MDQ và GDQ đối xứng qua DF nên MDQ = GDQ
HDG = HDP + MDP + MDQ+ GDQ = 2(MDP + MDQ)= 2.90 180 độ.(2)
HD và MD đối xứng qua ED nên HD = MD
GD và MD đối xứng qua DF nên GD = MD
Suy ra HD = GD (1)
từ (1) và (2) suy ra H đối xứng với G qua D

Cho tam giác DEF vuông tại D . Lấy M bất kì trên EF (M khác E,F) kẻ MP vuông góc với DE , kẻ MQ vuông góc với DF.
a, Tứ giác PMQD là hình gì ?
b,Tìm vị trí điểm M để PMQD là hình vuông.
" Minh chinh de ti nha "
a, Xét tứ giác PMQD co :
goc D=Q=90
Mà trong 1 tứ giác có 3 góc vuông là HCN
Vậy tứ giác PMQD là HCN
b, Không biết

a/ Xét tứ giác DPMQ có
∠EDF=∠MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> ˆIDE=ˆEDMIDE^=EDM^ (2)
CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)
Từ (2) ; (4)
=> ∠IDE+∠EDF+∠KDF=∠IDK=180oIDE^+EDF^+KDF^=IDK^=180o
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D

Hình tự vẽ dc ko ạ =(((( mik vẽ r nhưng lại bị out ra =.= lười lắm ạ
A/ xét tg AEHF ta có : HE vuông góc AB, FA vuông góc AB, HE//AC (gt)
=> góc AEH = góc EAF = góc AFH = 90 độ
=> Tứ giác AEHF là HCN
=>AH=EF
B/ Ta có H đối xứng M qua E => ME=EH
mak EH= AF (hcn) => ME=À
Ta có H đối xứng vs N qua F => FH=FN
mak FH =EA (hcn) => FN=EA
Xét tứ giác MEFA có :
+ ME=AF
+ ME//AF( slt)
=>Tứ giác MEFA là hình bình hành
=>EF=MA,EF//MA (1)
Xét tứ giác EFAN có :
+ FN = EA
+ AE//FN (slt)
=>Tứ giác EFAN là hình bình hành
=>EF=AN.EF//AN(2)
Từ (1) và (2) => MA=AN ; A,M,N thẳng hàng
=> M đối xứng N qua A
Ak quên câu C =.= ko thấy .V
C/Ta có M đối xứng H qua AB
=> AB là đg trung trực
=>MB=HB;MA=HA
Xét tam giác ABM và tam giác HAB có
BM=BH
MA=MH
AB chung
=>tam giác ABM = tam giác HAB (c-c-c)
=) góc M = góc H =90độ
Ta có H đối xứng N qua AC
=> AC là đg trung trực
=>HC=CN;HA=AN
Xét tam giác HCA và Tam giác ACN
HC=CN
HA=AN
AC chung
=>tam giác HCA = Tam giác ACN (c-c-c)
=) góc H= góc N =90 độ
Có CN vuông góc HA vuông góc BM
=> BM//CN
=> MBCN là hình thang mak góc BMN =90 đố => MBCN là hình thang vuông (dpcm)
a/ Xét tứ giác DPMQ có
\(\widehat{EDF}=\widehat{MQD}=\widehat{MPD}=90^o\)
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> \(\widehat{IDE}=\widehat{EDM}\) (2)
CMTT : DM = DK (3) ; \(\widehat{KDF}=\widehat{FDM}\) (4)
Từ (2) ; (4)
=> \(\widehat{IDE}+\widehat{EDF}+\widehat{KDF}=\widehat{IDK}=180^o\)
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
bạn tự làm