Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: 3n⋮⋮n-1
⇒3(n-1)+3⋮⋮n-1
⇒n-1∈Ư(3)={±1;±3}
Tự kẻ bảng nha
b, Ta có: 2n+7⋮⋮n-3
⇒2(n-3)+13⋮⋮n-3
⇒n-3∈Ư(13)={±1;±13}
Tự kẻ bảng nha
c, Ta có: 5n-1⋮⋮n+2
⇒5(n+2)-11⋮⋮n+2
Tự kẻ bảng
d, Ta có: n-3⋮⋮n²+4
⇒(n-3)(n+3)⋮⋮n²+4
⇒n²-9⋮⋮n²+4
⇒n²+4-13⋮⋮n²+4
⇒n²+4∈Ư(13)={±1;±13}
Tự kẻ bảng nha
a) 3n\(⋮\)n-1
\(tacó:3n=3\left(n-1\right)+3\)
Mà \(3\left(n-1\right)⋮n-1\Leftrightarrow3n⋮n-1\)thì \(3⋮n-1\Leftrightarrow n-1\inƯ\left(3\right)=\left\{1,-1,3,-3\right\}\)
\(n=2,0,4,-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) n+2 chia hết cho n-1
n+2=n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1 hay n-1\(\in\)Ư(3)={-1;1;-3;3}
n\(\in\){0;2;-2;4}
b) 2n-3 là bội của n+4 nghĩa là 2n-3 chia hết cho n+4
2n-3=2(n+4)-11 chia hết cho n+4
=> 11 chia hết cho n+4 hay n+4\(\in\)Ư(11)={-1;1;-11;11}
n\(\in\){-5;-3;-15;7}
c) n-7 chia hết cho 2n+3
n-7=2(n-7) chia hết cho 2n+3
2(n-7)=2n+3-17 chia hết cho 2n+3
=> 17 chia hết cho 2n+3 hay 2n+3\(\in\)Ư(17)={-1;1;-17;17}
n\(\in\){-2;-1;-10;7}
d) n+5 chia hết cho n-2
n+5=n-2+7 chia hết cho n-2
=> 7 chia hết cho n-2 hay n-2\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){1;3;-5;9}
e) n2 -2 là bội của n+3
n2-2=n(n+3)-3n-2=n(n+3)-3(n+3)+7 chia hết cho n-2
n(n+3) và 3(n+3) cùng chia hết cho n+3
=> 7 chia hết cho n+3 hay n+3\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){-4;-2;-10;4}
f) 3n-13 là ước của n-2 nghĩa là n-2 chia hết cho 3n-13
n-2 chia hết cho 3n-13 => 3(n-2) chia hết cho 3n-13
3(n-2)=3n-13+7 chia hết cho 3n-13
=> 7 chia hết cho 3n-13 hay 3n-13\(\in\)Ư(7)={-1;1-7;7}
n\(\in\){4;2;}
g) In+19I + In+5I + In+2011I = 4n
n+19+n+5+n+2011=-4n
TH1: 3n+2035=-4n => n=(-2035) :7 (loại)
TH2: n+19+n+5+n+2011=4n
3n+2035=4n => n=2035
a) n={0;±2;4}n={0;±2;4}
b) n={−9;±1;0;2;4;5;6;7;16}n={−9;±1;0;2;4;5;6;7;16}
c) n={−13;−3;−1;9}n={−13;−3;−1;9}
d) Không có n nguyên thỏa mãn
Giải thích các bước giải:
a) 3n3n ⋮⋮ n−1n−1
⇒3(n−1)+3⇒3(n−1)+3 ⋮⋮ n−1n−1
Do 3(n−1)3(n−1) ⋮⋮ n−1⇒3n−1⇒3 ⋮⋮ n−1n−1
⇒n−1∈Ư(3)={±1;±3}⇒n−1∈Ư(3)={±1;±3}
Với n−1=−1⇒n=0n−1=−1⇒n=0
n−1=1⇒n=2n−1=1⇒n=2
n−1=−3⇒n=−2n−1=−3⇒n=−2
n−1=3⇒n=4n−1=3⇒n=4
Vậy n={0;±2;4}n={0;±2;4}
b) 2n+72n+7 là bội của n−3⇒2n+7n−3⇒2n+7 ⋮⋮ n−3n−3
⇒2(n−3)+12⇒2(n−3)+12 ⋮⋮ n−3n−3
Do 2(n−3)2(n−3) ⋮⋮ n−3⇒12n−3⇒12 ⋮⋮ n−3n−3
⇒n−3∈Ư(12)={±1;±2;±3;±4;±12}⇒n−3∈Ư(12)={±1;±2;±3;±4;±12}
Ta có bảng sau:
n-3 -12 -4 -3 -2 -1 1 2 3 4 12
n -9 -1 0 1 2 4 5 6 7 15
Vậy n={−9;±1;0;2;4;5;6;7;16}n={−9;±1;0;2;4;5;6;7;16}
c) n+2n+2 là ước cửa 5n−1⇒5n−15n−1⇒5n−1 ⋮⋮ n+2n+2
5(n+2)−115(n+2)−11 ⋮⋮ n+2n+2
Do 5(n+2)5(n+2) ⋮⋮ n+2⇒11n+2⇒11 ⋮⋮ n+2n+2
⇒n+2∈Ư(11)={±1;±11}⇒n+2∈Ư(11)={±1;±11}
Ta có bảng sau:
n+2 -11 -1 1 11
n -13 -3 -1 9
Vậy n={−13;−3;−1;9}n={−13;−3;−1;9}
d) n−3n−3 là bội của n2+4n2+4
⇒n−3⇒n−3 ⋮⋮ n2+4n2+4
(n−3)(n+3)(n−3)(n+3) ⋮⋮ n2+4n2+4
n2−9n2−9 ⋮⋮ n2+4n2+4
n2+4−13n2+4−13 ⋮⋮ n2+4n2+4
Do n2+4n2+4 ⋮⋮ n2+4n2+4 nên 1313 ⋮⋮ n2+4n2+4
⇒n2+4∈Ư(13)={±1;±13}⇒n2+4∈Ư(13)={±1;±13}
do n2+4≥4n2+4≥4 nên ta chỉ xét n2+4={13}n2+4={13}
Với n2+4=13⇒n2=17⇒n=±√17n2+4=13⇒n2=17⇒n=±17 (loại)(do không là số nguyên)