Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)
Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB
Gọi G là trọng tâm của tam giác ABC, ta có :
\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)
Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC
Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có
\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)
\(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\) (1)
Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\) (2)
\(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)
\(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)
\(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)
\(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\) (3)
Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)
Hơn nữa, bằng kiểm tra trực tiếp ta thấy \(P\ge\sqrt{3}\) khi x=0
Vậy min P=\(\sqrt{3}\)

\(\left(1\right)\Leftrightarrow\left(x-2y\right)\left(2x^2+y^2+1\right)=0\Leftrightarrow x=2y\).Thay vào (2) ta có phương trình \(\sqrt{4x^2+x+6}+2x=1+5\sqrt{x+1}\left(3\right)\)
\(\Leftrightarrow\sqrt{4x^2+x+6}-\left(1-2x\right)=5\sqrt{x+1}\Leftrightarrow\frac{x+1}{\sqrt{4x^2+x+6}+1-2x}=\sqrt{x+1}\)
\(\Leftrightarrow\left[\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt{4x^2+x+6}+1-2x=\sqrt{x+1}\left(4\right)\end{matrix}\right.\)
Kết hợp (3) và (4) ta được \(2\sqrt{x+1}=2x-1\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\4x^2-8x+3=0\end{matrix}\right.\Leftrightarrow x=\frac{2+\sqrt{7}}{2}\)
P/S:Phương trình đã cho có 2 nghiệm :\(x=-1;x=\frac{2+\sqrt{7}}{2}\)
Em ko chắc đâu!
ĐK: chắc là x thuộc R:v
PT \(\Leftrightarrow\left(2x-1\right)\sqrt{x^2+2}+\left(2x+3\right)\sqrt{x^2+2x+3}+4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(\sqrt{x^2+2}-\frac{3}{2}\right)+10x+5+\left(2x+3\right)\left(\sqrt{x^2+2x+3}-\frac{3}{2}\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{x^2-\frac{1}{4}}{\sqrt{x^2+2}+\frac{3}{2}}\right)+10\left(x+\frac{1}{2}\right)+\left(2x+3\right)\left(\frac{x^2+2x+\frac{3}{4}}{\sqrt{x^2+2x+3}+\frac{3}{2}}\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}{\sqrt{x^2+2}+\frac{3}{2}}\right)+10\left(x+\frac{1}{2}\right)+\left(2x+3\right)\left(\frac{\left(x+\frac{1}{2}\right)\left(x+\frac{3}{2}\right)}{\sqrt{x^2+2x+3}+\frac{3}{2}}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left[\frac{\left(2x-1\right)\left(x-\frac{1}{2}\right)}{\sqrt{x^2+2}+\frac{3}{2}}+10+\frac{\left(2x+3\right)\left(x+\frac{3}{2}\right)}{\sqrt{x^2+2x+3}}\right]=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left[\frac{2x^2-2x+\frac{1}{2}}{\sqrt{x^2+2}+\frac{3}{2}}+10+\frac{2x^2+6x+\frac{9}{2}}{\sqrt{x^2+2x+3}}\right]=0\)
Dễ thấy cái ngoặc to vô nghiệm suy ra \(x=-\frac{1}{2}\)
số xấu quá (phân số) khi liên hợp khiến em nhức đầu @@ nên em ko biết có tính sai hay ko nữa!