Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\frac{2x+5}{3}-2=\frac{3x-7}{5}\)
\(\Rightarrow5\left(2x+5\right)-30=3\left(3x-7\right)\)
\(\Leftrightarrow10x+25-30=9x-27\)
\(\Leftrightarrow x=-22\)
vậy....................
\(b,\frac{x}{6}+x=\frac{2x+1}{2}\)
\(\Rightarrow2x+12x=6\left(2x+1\right)\)
\(\Leftrightarrow14x=12x+6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy.....................
c,\(\frac{x}{4}-\frac{2x-1}{3}=-\frac{5x}{12}\)
\(\Rightarrow3x-4\left(2x-1\right)=-5x\)
\(\Leftrightarrow3x-8x+4=-5x\)
\(\Leftrightarrow0x=-4\left(PTVN\right)\)
VẬY................
P/s : bạn chú ý \(\Rightarrow\)với \(\Leftrightarrow\)nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Leftrightarrow\)\(\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}\ge\frac{15\left(3x+2\right)}{30}\)
\(\Leftrightarrow\)12x + 30 - 20x \(\ge\) 45x + 30
\(\Leftrightarrow\) 12x - 20x - 45x \(\ge\) -30 + 30
\(\Leftrightarrow\)- 53x \(\ge\)0
\(\Leftrightarrow\)x \(\le\)0
Vậy bất phương trình có nghiệm là : x \(\le0\)
b) \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\Leftrightarrow\)\(\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\) 12 - 4x + 10 > 9 - 3x
\(\Leftrightarrow\)-4x + 3x > -12 - 10 + 9
\(\Leftrightarrow\)-x > -13
\(\Leftrightarrow\)x < 13
Vậy bất phương trình có nghiệm là : x < 13
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)ĐKXĐ : \(x\ne1;-3\)
\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x^2+6x+4}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-7x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow2x^2+6x+4=2x^2-7x+5\)
\(\Leftrightarrow2x^2+5x+4-2x^2+7x-5=0\)
\(\Leftrightarrow12x-1=0\)
\(\Leftrightarrow x=\frac{1}{12}\)( thỏa mãn ĐKXĐ )
b) c) tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ phương trình, ta có:
\(\frac{1}{2x-3}-\frac{5}{x}=\frac{3}{x\left(2x-3\right)}\)
\(\frac{x}{\left(2x-3\right)x}-\frac{10x-15}{x\left(2x-3\right)}=\frac{3}{x\left(2x-3\right)}\)
\(\frac{-9x-15}{x\left(2x-3\right)}=\frac{3}{x\left(2x-3\right)}\)
\(\frac{-9x-15-3}{x\left(2x-3\right)}=0\)
\(\frac{-9x-18}{x\left(2x-3\right)}=0\)
<=>-9x-18=0
<=>-9x=18
<=>x=-2
Vậy phương trình có nghiệm duy nhất x=-2
bạn ơi phải là \(\frac{-10x+15}{x\left(2x-3\right)}\) chứ lấy -5(2x-3) thì bằng -10x+15 chứ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a) }\frac{6}{x-4}-\frac{x}{x+2}=\frac{6}{x-4}.\frac{x}{x+2}\)
\(ĐKXĐ:x\ne-2;x\ne4\)
\(MTC:\left(x-4\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}=\frac{6x}{\left(x-4\right)\left(x+2\right)}\)
\(\Rightarrow6\left(x+2\right)-x\left(x-4\right)=6x\)
\(\Leftrightarrow6x+12-x^2+4x=6x\)
\(\Leftrightarrow6x+12-x^2+4x-6x=0\)
\(\Leftrightarrow-x^2+4x+12=0\)
\(\Leftrightarrow-\left(x^2-4x-12\right)=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2+2x-6x-12=0\)
\(\Leftrightarrow x\left(x+2\right)-6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x=-2\left(\text{loại}\right)\text{ hoặc }x=6\left(\text{nhận}\right)\)
Vậy \(S=\left\{6\right\}\)
\(\text{b) }\frac{2x+3}{2x-1}=\frac{x-3}{x+5}\)
\(ĐKXĐ:x\ne\frac{1}{2};x\ne-5\)
\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\left[\text{Tỉ lệ thức}\right]\)
\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)
\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)
\(\Leftrightarrow2x^2+13x-2x^2+7x=3-15\)
\(\Leftrightarrow20x=-12\)
\(\Leftrightarrow x=\frac{-12}{20}=\frac{-3}{5}\)
Vậy \(S=\left\{\frac{-3}{5}\right\}\)
`(2x)/3-(2x+5)/4=1/2`
`<=>(2x*4)/12-(3(2x+5))/12=1/2`
`<=>(8x-6x-15)/12=1/2`
`<=>(2x-15)/12=1/2`
`<=>2x-15=12*1/2`
`<=>2x-15=6`
`<=>2x=15+6`
`<=>2x=21`
`<=>x=21/2`
Vậy `x=21/2`