
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

=100x + [\(\frac{\left(100+1\right).100}{2}\)]=7450 ( Lý do mk nhân với 100 là do 100 là số lượng số của dãy số trên, 100 +1 là số cuối cộng số đầu như công thức bạn nhé. Với lại bạn có thể chỉ cần ghi luôn 100x chứ không cần phải giải thích đâu )
=100x + 5050 = 7450
=100x = 7450-5050
100x = 2400
=> x=24
Vậy x = 24
Bài này có nhiều cách giải nhưng mk nghĩ cách này ngắn gọn nhất.
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=7450\)
\(x+\left(1+2+3+4+...+99+100\right)\)
xét : \(1+2+3+4....+99+100\)
có số số hạng là:\(\left(100-1\right):1+1=100\)
suy ra:\(1+2+3+4+....+99+100=\left(100+1\right).100:2=101.100:2=5050\)
vậy ta có :\(x+5050=7450\)
\(x=7450-5050\)
\(x=2400\) Vậy \(x=2400\)

\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)
Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-\frac{1}{\sqrt2}\\ x=\frac{1}{\sqrt2}\end{array}\right.\)
Vậy \(x\) \(\in\) {- \(\frac{1}{\sqrt2}\); 0; \(\frac{1}{\sqrt2}\)}
Cái đề thế này đúng không bạn
2x + 2x+3 = 144
<=> 2x + 8×2x = 144
<=> 9×2x = 9×24
<=> x = 4