
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2-25+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5+2\right)=0\)
\(\left(x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}}\)
\(x\left(x-1\right)+x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
P/s tham khảo nha


\(\left(3x+1\right)^2-x^2+8x-16=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)
\(\left(3x+1\right)^2-x^2+8x-16=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)

\(\left(x+4\right)\left(3x-1\right)+\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)\left(3x-1\right)=0\\x^2+8x+16=0\end{cases}}\)
Xét PT 1 : \(\left(x+4\right)\left(3x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{1}{3}\end{cases}}\)
Xét PT 2 : \(x^2+8x+16=0\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)

\(=\dfrac{\left(x-4\right)\cdot\left(x+4\right)}{x}\cdot\dfrac{x}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}
\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)
\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)
\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)
Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian

(2 - 3x)x - (7 - 2x)x = 5-x2
<=> 2x -3x2 -7x - 2x2 + x2= 5
<=> -5x - 4x2 =5
<=> -x(5 - 4x) = 5
<=> \(\orbr{\begin{cases}-x=5\\5-4x=5\end{cases}}\)<=>\(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
vậy nghiệm của pt là x= -5 hoặc x=0
b) x2- 8x +16 = 0
<=> (x - 4)2
<=> (x - 4)(x-4) =0
<=> x-4 = 0
<=> x=4
vậy nghiệm của pt là x=4
c) nghiệm ko xác định
a/\(\left(2-3x\right)x-\left(7-2x\right)x=5-x^2\)
\(\Leftrightarrow2x-3x^2-7x+2x^2+x^2=5\)
\(\Leftrightarrow-5x=5\)
\(\Leftrightarrow x=-1\)
Vậy \(S=\left\{-1\right\}\)
b/ \(x^2-8x+16=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot4+4^2=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy \(S=\left\{4\right\}\)
c/ \(x^2-6x+4=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot3+3^2-9+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Leftrightarrow x-3=-\sqrt{5}\)hoặc \(x-3=\sqrt{5}\)
\(\Leftrightarrow x=-\sqrt{5}+3\)hoặc \(x=\sqrt{5}+3\)
Vậy \(S=\left\{-\sqrt{5}+3;\sqrt{5}+3\right\}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(2x^2+16x+32-x^2+4=0\)
\(x^2+16x+36=0\)
\(x^2+16x+64-28=0\)
\(\left(x+8\right)^2-\left(\sqrt{28}\right)^2=0\)
\(\left(x+8-\sqrt{28}\right)\left(x+8+\sqrt{28}\right)=0\)
đến đây tự làm tiếp