K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

\(2\left(x^2+8x+16\right)-x^2+4=0\)

\(2x^2+16x+32-x^2+4=0\)

\(x^2+16x+36=0\)

\(x^2+16x+64-28=0\)

\(\left(x+8\right)^2-\left(\sqrt{28}\right)^2=0\)

\(\left(x+8-\sqrt{28}\right)\left(x+8+\sqrt{28}\right)=0\)

đến đây tự làm tiếp

\(x^2-25+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5+2\right)=0\)

\(\left(x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}}\)

\(x\left(x-1\right)+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

P/s tham khảo nha

14 tháng 8 2019

giúp mình vk mình hơi dốt toán

14 tháng 8 2019

\(\left(x-4\right)^2=\left(x-4\right)^2\)

vô nghiệm

14 tháng 2 2020

\(\left(3x+1\right)^2-x^2+8x-16=0\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)

\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)

14 tháng 2 2020

\(\left(3x+1\right)^2-x^2+8x-16=0\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)

\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)

\(\left(x+4\right)\left(3x-1\right)+\left(x^2+8x+16\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)\left(3x-1\right)=0\\x^2+8x+16=0\end{cases}}\)

Xét PT 1 : \(\left(x+4\right)\left(3x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{1}{3}\end{cases}}\)

Xét PT 2 : \(x^2+8x+16=0\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)

5 tháng 5 2017

\(x=\frac{-3}{4}\)hoặc \(x=-4\)

18 tháng 12 2022

\(=\dfrac{\left(x-4\right)\cdot\left(x+4\right)}{x}\cdot\dfrac{x}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)

8 tháng 7 2017

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x\left(-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}

\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)

\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)

\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)

Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian

3 tháng 8 2018

(2 - 3x)x - (7 - 2x)x = 5-x2

<=> 2x -3x2 -7x - 2x2 + x2= 5  

<=> -5x - 4x2 =5

<=> -x(5 - 4x) = 5

<=> \(\orbr{\begin{cases}-x=5\\5-4x=5\end{cases}}\)<=>\(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

vậy nghiệm của pt là x= -5 hoặc x=0

b) x2- 8x +16 = 0

<=> (x - 4)2

<=> (x - 4)(x-4) =0 

<=> x-4 = 0

<=> x=4

vậy nghiệm của pt là x=4

c) nghiệm ko xác định

3 tháng 8 2018

a/\(\left(2-3x\right)x-\left(7-2x\right)x=5-x^2\)

\(\Leftrightarrow2x-3x^2-7x+2x^2+x^2=5\)

\(\Leftrightarrow-5x=5\)

\(\Leftrightarrow x=-1\)

Vậy \(S=\left\{-1\right\}\)

b/ \(x^2-8x+16=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot4+4^2=0\)

\(\Leftrightarrow\left(x-4\right)^2=0\)

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

Vậy \(S=\left\{4\right\}\)

c/ \(x^2-6x+4=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot3+3^2-9+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Leftrightarrow x-3=-\sqrt{5}\)hoặc \(x-3=\sqrt{5}\)

\(\Leftrightarrow x=-\sqrt{5}+3\)hoặc \(x=\sqrt{5}+3\)

Vậy \(S=\left\{-\sqrt{5}+3;\sqrt{5}+3\right\}\)