
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...

a) \(3n+5⋮n+4\)
\(\Rightarrow3.\left(n+4\right)-7⋮n+4\)
Mà \(3.\left(n+4\right)⋮n+4\)
\(\Rightarrow7⋮n+4\)
Tự tìm nốt
b) \(n^2+5⋮n+1\)
\(\Rightarrow n^2+n-n+5⋮n+1\)
\(\Rightarrow n.\left(n+1\right)-\left(n-5\right)⋮n+1\)
mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow6⋮n+1\)
Tìm nốt

A,,3n+2 chia hết cho n-1 thì 3n-3+5 chia hết cho n-1 suy ra 3(n-1)+5 chia hết cho n-1 suy ra 5 chia hết cho n-1 nên n thuộc -4 ; 0 ; 2 ; 6
TICK NHA BẠN

\(\frac{2n+1}{n-5}=\frac{2n-10+11}{n-5}=\frac{2n-10}{n-5}+\frac{11}{n-5}=2+\frac{11}{n-5}\)
=> 11 chia hết cho n-5
n-5 thuộc Ư (11) = { -11; -1; 1; 11}
( rồi bạn thế vô rồi tính nha ^^ ... tương tự đối với b và c)

a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |