Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Viết tổng sau dưới dạng tích và tính giá trị biểu thức với x = -8x=−8.

\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)
Câu 6:
\(\left(x-2016\right)^2\ge0\) với mọi x
\(\left(x+2017\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\) và \(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)
\(\Rightarrow x+y=2016-2017=-1\)
Câu 7:
\(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)
\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)
câu 5:
x2+y2=5 -> x2+2xy+ y2-2xy=5
-> (x+y)2 - 2xy = 5 -> 32 - 2xy = 5 ->xy = 2
có x3+ y3= (x+y).(x2-xy+y2)
= 3.( 5- 2)= 9
vậy x3+ y3 =9
câu 6:
( x - 2016)2 ≥ 0 dấu = xảy ra khi x=2016
( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi y = 2016
-> ( x - 2016)2 + ( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017
-> x+y=2016+2017=4033
câu 7:
a,
D = x2 +2xy +y2 - 6x - 6y -15= (x2 +2xy +y2) - (6x + 6y) -15= (x+y)2 - 6(x+y) - 15
D= (-9)2 -6.(-9)-15=120
b,
Q = x2 + 2xy + y2 - 4x - 4y +1 = (x2 + 2xy + y2) - (4x + 4y) +1
Q= (x+y)2-4.(x+y)+1
Q=32- 4.3 +1= -2

a)\(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)
\(\Rightarrow x^2+2xy+y^2=a^2\Rightarrow x^2+y^2=a^2-2xy\Rightarrow x^2+y^2=a^2-2b\)

Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)

a, A = (x-2)^2 = (12-2)^2 = 10^2 = 100
b, = x^3y^3-1/3x^2y^2+2x^2y^2z
k mk nha

Bài 1a/
\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)
\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)
Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)
Chiều về làm tiếp
Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012
Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)
Bài 2: Dùng phân tích thành bình phương
\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)
\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)
Bài 3:
a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)
b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

(x3 - 4y)(x2 - 2xy + 4y)(x2 + 2xy + 4y) tại x = -2; y = 1/2
Thay x = -2; y = 1/2 vào biểu thức, ta có:
[(-2)3 - 4.(1/2)].[(-2)2 - 2.(-2).(1/2) + 4.(1/2)].[(-2)2 + 2.(-2).(1/2) + 4.(1/2)]
= -10.8.4
= -320
Vậy:..
\(A=x^2+2xy+y^2-6-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5=2^2-6\cdot2-5=-13\)
\(B=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3x^2+3y^2-\left(x+y\right)\left(x^2+xy+y^2\right)+1\)
\(=3x^2+3y^2-2\left(x^2+xy+y^2\right)+1\)
\(=3x^2+3y^2-2x^2+2xy-2y^2+1=x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1=2^2+1=5\)