K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8

Bài này là:

\(S = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \hdots + \frac{2}{98 \cdot 99} + \frac{2}{99 \cdot 100}\)


Bước 1: Tách thành phân số đơn giản
Ta có công thức rút gọn:

\(\frac{2}{n \left(\right. n + 1 \left.\right)} = \frac{2}{n} - \frac{2}{n + 1}\)


Bước 2: Viết lại tổng

\(S=\left(\right.\frac{2}{1}-\frac{2}{2}\left.\right)+\left(\right.\frac{2}{2}-\frac{2}{3}\left.\right)+\left(\right.\frac{2}{3}-\frac{2}{4}+\cdots+\left(\right.\frac{2}{99}-\frac{2}{100}\left.\right)\)


Bước 3: Nhận ra dạng telescoping (các số ở giữa triệt tiêu)
Sau khi triệt tiêu:

\(S = 2 - \frac{2}{100}\)


Bước 4: Tính kết quả

\(S = 2 - 0.02 = 1.98\)

Hoặc viết gọn:

\(S = \frac{99}{50}\)


📌 Kết quả cuối:

\(\boxed{\frac{99}{50}hay1.98}\)

13 tháng 8

2/1x2+2/2x3+......+2/99x100

=2/1-2/2+2/2-2/3+.....+2/99-2/100

=2-2/100

=99/50

12 tháng 8 2017

Gọi biểu thức trên là A, ta có :

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

12 tháng 8 2017

sai thì thui nhá,mk hok ngu lắm

28 tháng 6 2016

1/1.2 +1/2.3 +1/3.4 +...+1/98.99 +1/99.100

=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100

=1-1/100=100/100-1/100=99/100

28 tháng 6 2016

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

   \(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

   \(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)

21 tháng 6 2015

=5(x1/1x2 + 1/2x3 +... +1/99x100)

= 5 x( 1/1 - 1/2 +1/2 -1/3 +... +1/99 -1/100)

= 5 x( 1 /1- 1/100)

= 5 x99/100 

= 99/ 20

11 tháng 10 2019

chịu thua

11 tháng 3 2017

A=2(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))=2(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))

=> A=2(\(\frac{1}{1}-\frac{1}{100}\))=2.\(\frac{99}{100}=\frac{99}{50}\)

ĐS: A=99/50

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{99\times100}\)

\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

10 tháng 9 2017

Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{99.100}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=2.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2.99}{100}\)

\(A=\frac{99}{50}=1\frac{49}{50}\)

10 tháng 9 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)=2.\frac{99}{100}\)

\(=\frac{99}{50}\)

27 tháng 4 2018

=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

27 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{99}{100}\)

~~~
#Sunrise

15 tháng 1 2022

gấp lắm ạ giúp em với

 

\(\Leftrightarrow y\cdot\dfrac{99}{50}=\dfrac{198}{100}=\dfrac{99}{50}\)

hay y=1