Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3.3 d)
\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)
3.4 a)
\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)
Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)
Ta được:
\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)
Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\)
Phương trình tương đương:
\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

\(1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\cos^2\left(\dfrac{\Pi}{4}-\dfrac{x}{2}\right)\)
\(\Leftrightarrow1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\left(\dfrac{\sqrt{2}}{2}\cos\dfrac{x}{2}+\dfrac{\sqrt{2}}{2}\sin\dfrac{x}{2}\right)^2\)
\(\Leftrightarrow1+2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-\cos\dfrac{x}{2}\left(2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\right)^2=1+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\)
\(\Leftrightarrow2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-4\cos^3\dfrac{x}{2}\sin^2\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos\dfrac{x}{2}=0\)
\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos^2\dfrac{x}{2}-1\right)=0\)
\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\left(1-\sin^2\dfrac{x}{2}\right)-1\right)=0\)
\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}.\left(\sin\dfrac{x}{2}-1\right)\left(2\sin^2\dfrac{x}{2}+2\sin\dfrac{x}{2}+1\right)=0\)

c.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(8x+\frac{2\pi}{3}\right)=\frac{1}{2}-\frac{1}{2}cos\left(\frac{14\pi}{5}-2x\right)\)
\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(2\pi+\frac{4\pi}{5}-2x\right)\)
\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(\frac{4\pi}{5}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}8x+\frac{2\pi}{3}=\frac{4\pi}{5}-2x+k2\pi\\8x+\frac{2\pi}{3}=2x-\frac{4\pi}{5}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{75}+\frac{k\pi}{5}\\x=-\frac{11\pi}{45}+\frac{k\pi}{3}\end{matrix}\right.\)
a.
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{2\pi}{3}\right)\)
\(\Leftrightarrow cos4x=-cos\left(2x+\frac{2\pi}{3}\right)\)
\(\Leftrightarrow cos4x=cos\left(\frac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-2x+k2\pi\\4x=2x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k\pi}{3}\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(10x+\frac{2\pi}{3}\right)-\frac{1}{2}-\frac{1}{2}cos\left(6x+\frac{\pi}{2}\right)=0\)
\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=-cos\left(6x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=cos\left(\frac{\pi}{2}-6x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}10x+\frac{2\pi}{3}=\frac{\pi}{2}-6x+k2\pi\\10x+\frac{2\pi}{3}=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{96}+\frac{k\pi}{8}\\x=-\frac{7\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)

1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)
\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)
\(\Leftrightarrow5\sin2x+5\cos2x=5\)
\(\Leftrightarrow\cos2x+\sin2x=1\)
\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)
\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)
\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

Câu 1:
\(cos7x-\sqrt{3}sin7x=-2\\ \Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow7x+\dfrac{\pi}{3}=-\pi+k2\pi\\ \Leftrightarrow x=-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\)
Vì \(x\in[\dfrac{2\pi}{5};\dfrac{6\pi}{7}]\)
\(\Rightarrow\dfrac{2\pi}{5}\le x\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{2\pi}{5}\le-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{31}{15}\le k\le\dfrac{11}{3}\)
Vì \(k\in Z\) nên \(k=3\)
Vậy \(x\) cần tìm là \(\dfrac{2\pi}{3}\)
Câu 2:
\(2sin^2x-sinxcosx-cos^2x=m\\ \Leftrightarrow2\dfrac{1-cos2x}{2}-\dfrac{1}{2}s\text{in2}x-\dfrac{1+cos2x}{2}=m\\ \Leftrightarrow3cos2x+s\text{in2}x=1-2m\)
Điều kiện để phương trình có nghiệm là:
\(3^2+1^2\ge\left(1-2m\right)^2\\ \Leftrightarrow4m^2-4m-9\le0\\ \Leftrightarrow\dfrac{1-\sqrt{10}}{2}\le m\le\dfrac{1+\sqrt{10}}{2}\)
a1)\(\dfrac{sin110}{cos110}+\dfrac{cos20}{sin20}\)
\(=\dfrac{sin\left(180-70\right)}{cos\left(180-70\right)}+\dfrac{cos\left(90-70\right)}{sin\left(90-70\right)}\)
\(=\dfrac{sin70}{-cos70}+\dfrac{sin70}{cos70}=0\)
a2) \(sin^2x+sin^2\left(\dfrac{\pi}{3}-x\right)+sinx.sin\left(\dfrac{\pi}{3}-x\right)\)
\(=\dfrac{1}{2}\left(1-cos2x\right)+\dfrac{1}{2}\left[1-cos\left(\dfrac{2\pi}{3}-2x\right)\right]+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{3}\right)-cos\left(\dfrac{\pi}{3}\right)\right]\)
\(=\dfrac{1}{2}-\dfrac{1}{2}.cos2x+\dfrac{1}{2}-\dfrac{1}{2}.cos\left(\dfrac{2\pi}{3}-2x\right)+\dfrac{1}{2}.cos\left(2x-\dfrac{\pi}{3}\right)-\dfrac{1}{4}\)
\(=\dfrac{3}{4}-\dfrac{1}{2}\left[cos2x+cos\left(\dfrac{2\pi}{3}-2x\right)-cos\left(2x-\dfrac{\pi}{3}\right)\right]\)
\(=\dfrac{3}{4}-\dfrac{1}{2}\left[cos2x-2.sin\dfrac{\pi}{6}.sin\left(\dfrac{\pi-4x}{2}\right)\right]\)
\(=\dfrac{3}{4}-\dfrac{1}{2}\left(cos2x-cos2x\right)\)
\(=\dfrac{3}{4}\)
a3) \(sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)
\(=\dfrac{1-cos2x}{2}+\dfrac{1}{2}\left[cos\left(-2x\right)+cos\left(\dfrac{2\pi}{3}\right)\right]\)
\(=\dfrac{1-cos2x}{2}+\dfrac{cos2x}{2}-\dfrac{1}{4}\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\)
\(=\dfrac{1}{4}\)