Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh giỏi, khá, trung bình lấn lượt là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b+c-a}{2+6-5}=\dfrac{180}{3}=60\)
\(\dfrac{a}{2}=60\Rightarrow a=120\\ \dfrac{b}{6}=60\Rightarrow b=360\\ \dfrac{c}{5}=60\Rightarrow c=300\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b+c-a}{3+4-2}=\dfrac{120}{5}=24\)
Do đó: a=48; b=72; c=96
Gọi a,b,c lần lượt là số học sinh giỏi, khá, trung bình của khối 7 (a,b,c ∈ N*)
Theo đề bài, ta có :
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và b+c-a = 120(em)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{2}\) =\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=\(\dfrac{b+c-a}{3+4_{ }-2}\)=\(\dfrac{120}{5}\)=24
Từ\(\dfrac{a}{2}\)= 24 => a = 24.2 = 48
Từ \(\dfrac{b}{3}\)= 24 => b = 24.3 = 72
Từ\(\dfrac{c}{4}\)= 24 => c = 24.4 = 96
Vậy số học sinh giỏi là : 48 em
học sinh khá là : 72 em
học sinh trung bình là : 96 em
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi số hs giỏi, khá, trung bình lần lượt là $a,b,c$
Theo bài ra ta có:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
$b+c-a=180$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30$
$\Rightarrow a=2.30=60; b=3.30=90; c=5.30=150$
Vậy số hsg là $60$ em.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh giỏi, khá, trung bình của khối 7 theo thứ tự là a, b và c.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
\(\left[\begin{array}{nghiempt}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{5}=30\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=30\times2\\b=30\times3\\c=30\times5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=60\\b=90\\c=150\end{array}\right.\)
Giải:
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c ( a,b,c\(\in\)N* )
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và b + c - a = 180
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy khối 7 có 60 học sinh giỏi
90 sinh khá
150 học sinh trung bình
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh giỏi, khá, trung bình lần lượt là x; y; z (x; y; z\(\in\)N*)
=>\(\frac{x}{2}\)= \(\frac{y}{3}\)= \(\frac{z}{5}\)
Áp dụng t/c DTSBN, ta có:
=>\(\frac{x}{2}\)= \(\frac{y}{3}\)= \(\frac{z}{5}\)= \(\frac{y+z-x}{3+5-2}\)= \(\frac{180}{6}\)=30
=> x=60
y= 90
z= 150
Vậy ...