K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 6 2020

1.

\(d\left(A;d\right)=\frac{\left|3.1-4.3+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{5}{5}=1\)

2. Đường thẳng d qua \(Q\left(2;5\right)\) và nhận \(\left(1;-3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt

Pt tổng quát: \(3\left(x-2\right)+1\left(y-5\right)=0\Leftrightarrow3x+y-11=0\)

\(\Rightarrow d\left(P;d\right)=\frac{\left|3.3+12.1-11\right|}{\sqrt{3^2+1^2}}=\frac{10}{\sqrt{10}}=\sqrt{10}\)

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

10 tháng 4 2020

hello

10 tháng 4 2020

hello

8 tháng 10 2019

Đáp án D

23 tháng 8 2019

Đáp án A

Ta có: 

AM →  (3; 2; 4)

Mặt phẳng (P) có vecto pháp tuyến là n p →  (1; 1; 1)

Gọi H là hình chiếu vuông góc của A trên d. Ta có: d(A; d) = AH ≤ AM = 29

Dấu bằng xảy ra khi và chỉ khi H trùng M, nghĩa là d vuông góc với AM.

 

NV
25 tháng 6 2020

a/ CD qua E và vuông góc BC nên pt có dạng:

\(1\left(x-6\right)-1\left(y-0\right)=0\Leftrightarrow x-y-6=0\)

Ta có: \(AB=d\left(A;BC\right)=\frac{\left|3+5-2\right|}{\sqrt{1^2+1^2}}=3\sqrt{2}\)

\(AD=d\left(A;CD\right)=\frac{\left|3-5-6\right|}{\sqrt{1^2+\left(-1\right)^2}}=4\sqrt{2}\)

\(\Rightarrow S_{ABCD}=AB.AD=24\)

b/ Do M thuộc d nên tọa độ có dạng: \(M\left(1+t;2-3t\right)\)

Áp dụng công thức khoảng cách:

\(d\left(M;\Delta\right)=4\Leftrightarrow\frac{\left|3\left(1+t\right)+4\left(2-3t\right)+5\right|}{\sqrt{3^2+4^2}}=4\)

\(\Leftrightarrow\left|16-9t\right|=20\Rightarrow\left[{}\begin{matrix}16-9t=20\\16-9t=-20\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=-\frac{4}{9}\\t=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}M\left(\frac{5}{9};\frac{10}{3}\right)\\M\left(5;-10\right)\end{matrix}\right.\)

30 tháng 3 2021

undefined

30 tháng 3 2021

Làm hơi lộn xộn tí, ráng nhìn :v

11 tháng 2 2023

\(1/\)

\(M\left(3;5\right);d:x+y+1=0\)

\(\)Gọi khoảng cách từ M đến d là \(l\)

\(l\left(M;d\right)=\dfrac{\left|x_M+y_M+1\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3+5+1\right|}{\sqrt{1^2+1^2}}=\dfrac{9\sqrt{2}}{2}\)

\(M\left(2;3\right);d:\left\{{}\begin{matrix}x-2t\\y=2+3t\end{matrix}\right.\)

d qua \(M\left(2;3\right)\) có \(VTCP\overrightarrow{u}=\left(-2;3\right)\Rightarrow VTPT\overrightarrow{n}=\left(3;2\right)\)

\(PTTQ\) của \(\Delta:3\left(x-2\right)+2\left(y-3\right)=0\)

\(\Rightarrow3x-6+2y-6=0\)

\(\Rightarrow3x+2y-12=0\)

Gọi khoảng cách từ M đến d là \(l\)

\(l\left(M;d\right)=\dfrac{\left|3.x_M+2.y_M-12\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3.2+2.3-12\right|}{\sqrt{3^2+2^2}}=0\)