![](https://rs.olm.vn/images/avt/0.png?1311)
- x^2 - 3x - 9 = x^2 - 2.x. 3/2 + 9/4 -9/4 +9
\(A = { 5+ \sqrt{x^2 - 3x +9}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\) \(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\) \(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\) \(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\) \(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\) \(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\) d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\) \(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\) \(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\) \(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\) \(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\) \(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\) \(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\) \(DK:x\ge1\) \(A=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}+2019\) \(=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|+2019\) \(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|+2019\ge|\sqrt{x-1}+1+1-\sqrt{x-1}|+2019=2021\) Dau '=' xay ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\) TH1: \(\hept{\begin{cases}\sqrt{x-1}+1\ge0\\1-\sqrt{x-1}\ge0\end{cases}\Leftrightarrow x=2\left(n\right)}\) TH2: \(\hept{\begin{cases}\sqrt{x-1}+1\le0\\1-\sqrt{x-1}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}\le-1\\\sqrt{x-1}\ge1\end{cases}\left(l\right)}}\) Vay \(A_{min}=2021\)khi \(x=2\) a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\) \(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\) b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\) Vậy Min P =-1/4 c, Chắc bằng nhau vì cùng dương mà Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0 b) Đkxd X >=0 Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\) Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0 Hay min p =0 Dấu = xảy ra <=> x=0 Vậy để minP=0<=>x=0 C)Dkxd x>1 CóP>=0(chứng minh trên ) =>|P|=P ĐKXĐ: x>=1 \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\) \(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=2\) \(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\) Ta có \(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\) Dấu "=" xảy ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\) <=> x=<2. Kết hợp với ĐKXĐ => 1=<x=<2 \(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) ĐK : \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\) \(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\) \(=\frac{x+2\sqrt{xy}+y}{x-y}-\frac{x-2\sqrt{xy}+y}{x-y}\) \(=\frac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}=\frac{4\sqrt{xy}}{x-y}\) Với \(\hept{\begin{cases}x=7+2\sqrt{3}\\y=7-2\sqrt{3}\end{cases}}\)( tmđk ) => \(A=\frac{4\sqrt{\left(7+2\sqrt{3}\right)\left(7-2\sqrt{3}\right)}}{7+2\sqrt{3}-\left(7-2\sqrt{3}\right)}\) \(=\frac{4\sqrt{7^2-\left(2\sqrt{3}\right)^2}}{7+2\sqrt{3}-7+2\sqrt{3}}\) \(=\frac{4\sqrt{49-12}}{4\sqrt{3}}\) \(=\frac{4\sqrt{37}}{4\sqrt{3}}=\frac{\sqrt{37}}{\sqrt{3}}=\frac{\sqrt{37}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{\sqrt{111}}{3}\) a, \(ĐKXĐ:x\ge\frac{1}{2}\) Ta có: \(\sqrt{2x-1}+2=x\) \(\Rightarrow\sqrt{2x-1}=x-2\) \(\Rightarrow2x-1=x^2-4x+4\) \(\Rightarrow6x-x^2-5=0\) \(\Rightarrow x^2-6x+5=0\) \(\Rightarrow\left(x-3\right)^2=4\) \(\Rightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\) Ban Nguyen Van Tuan Anh phai danh gia 2 ve phuong trinh roi moi duoc binh phuong 2 ve len chu Tuc la them dieu kien \(\sqrt{2x-1}=x-2\) <=>\(\hept{\begin{cases}x\ge2\\2x-1=x^2-4x+4\end{cases}}\) T u do ta moi loai duoc TH x=1 khong thoa man roi moi ket luan PT co nghiem duy nhat x=5