Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất đường phân giác)
hay \(IA\cdot BH=IH\cdot BA\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
1a)
\(\hept{\begin{cases}2x-2017=1\\12x-2017=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=2018\\12x=2018\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1009\\x=\frac{1009}{6}\end{cases}}\)
Em nghĩ là như vậy . Nếu có gì em sẽ sửa.
Gọi số thứ nhất là a ( 0 < a < 125 )
Số thứ hai là 4a
Ta có phương trình :
\(a+4a=125\)
\(\Leftrightarrow5a=125\)
\(\Leftrightarrow a=25\left(tm\right)\)
Vậy số thứ 1 là 25
Số thứ 2 = 25 x 4 = 100
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) xét tam giác abc và tam giác hba :
góc b chung
góc bac = ahb = 90 độ
=> tam giác abc đồng dạng vs tam giác hba ( g-g)
b) xét tam giác iab và tam giác ihb
góc abi = ibh (bi là tia phân giác )
ab/bh = ai / ih (t/c tia phân giác)
=> tam giác iab đồng dạnh vs tam giác ihb (c-g-c)
=> ia.bh = ih.ba
c) D j z ? thiếu dữ kiên j nha pạn ?????????
![](https://rs.olm.vn/images/avt/0.png?1311)
A) Xét \(\Delta HBA\) và \(\Delta ABC\) có :
\(\widehat{B}\) chung ; \(\widehat{BAC}=\widehat{BHA}=90\) độ
\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)
B) Xét \(\Delta ABE\) và \(\Delta ACB\) có :
\(\widehat{A}\) chung
\(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà \(\widehat{B}=2\widehat{C}\))
\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)
C) ta có tỉ lệ : \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)
Xét \(\Delta BHD\) và \(\Delta BAE\) có :
\(\widehat{BHD}=\widehat{BAE}=90\)độ
\(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )
\(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)
\(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)
BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!
Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận
![](https://rs.olm.vn/images/avt/0.png?1311)
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)