Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành

1/C/m: BEDF là hbh
2/C/m: Dùng tính chất đường trung bình chứng minh M là t/d AN và N là t/d MC.
3/C/m: ME là đường trung bình tam giác ANB và NF là đường trung bình tam giác MDC
4/C/m: EMFN là hbh ( t/g có 2 cạnh đối vừa song vừa bằng nhau)

a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành

a) Ta có:\(AE=EB=\frac{1}{2}AB\)
\(\text{AF}=FC=\frac{1}{2}CD\)
mà AB=CD( 2 cạnh đối trong hìh bình hành
=> AE=EB=AF=FC
Ta có: Tứ giác AFCE có : AE=FC(cmt)
AE//FC
=> AFCE là hình bình hành
Tứ giác BEDF có : EB=FD(cmt)
EB//FD
=> BEDF là hình bình hành
b)Ta có: AECF là hình bình hành
=> AF//CE và AF=CE
BEDF là hình bình hành
=> BF//DE và BF=DE