Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 31 = ...3
32 = ..9
33 = ..7
34 = ...1
35 = ...3
Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.
Mà 20 : 4 = 5 ( không dư)
=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.
Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.
Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.
S = 1 + 3 + 32 + 33 +...+ 320
3S= 3.(1+3+32+33+....320)
3S= 3+32+33+...+320+ 321
3S-S=321-1
2S=321-1
S=321- 1 / 2
321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi

\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13
b/
Vì scp ko có t/c là 3 => S ko là scp

a, 100=102=> là số chính phương
b,100=102=> là số chính phương
c,169=132=> là số chính phương
d, 117 không phải số chính phương
e,68 không phải số chính phương
mình làm đúng 100%
nha
a, 100=102=> là số chính phương
b,100=102=> là số chính phương
c,169=132=> là số chính phương
d, 117 không phải số chính phương
e,68 không phải số chính phương
mik làm đúng, nha

ko .vì khi 330 chia nhỏ thành 33 thì chữ số tận cùng của nó là 7.vậy số tận cùng của 330 là số 7 nhưng số chính phương ko có chữ số tận cùng nào bằng 7 nên số tận cùng của Sko phải là số chính phương

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.
*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.
*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3)
=> P = 3k + 1 hoặc 3k + 2
+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại
+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại
Vậy P chỉ có thể = 3
Bài 2: S = 30 + 31 + 32 + ... + 3123
S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)
S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)
S = 30.40 + ... + 3120.40
S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120)
Vì tích chứa 10 => S chia hết cho 10.
S = 1 + 3 + 32 + ... + 3123
S = ( 1 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )
S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)
S = 1.40 + 34.40 + ... + 3120.40
S = 4.10.(1+34+...+3120) chia hết cho 10