Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình như đây là đề thi vào 10 chuyên năng khiếu thành phố hồ chí minh năm 2013-2014 thì phải
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(VT=a^2b^2\left(a^2+b^2\right)=\frac{2a^2b^2\left(a^2+b^2\right)}{2}\)
\(\le\frac{\frac{\left(a+b\right)^2}{4}}{2}\cdot\left(\frac{a^2+b^2+2ab}{4}\right)\)
\(=\frac{\frac{\left(a+b\right)^2}{4}}{2}\cdot\left(\frac{\left(a+b\right)^2}{4}\right)\)
\(\le\frac{\frac{1^2}{4}}{2}\cdot\left(\frac{1^2}{4}\right)=\frac{1}{32}\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
1)
Theo đề ta có: n không chia hết cho 2 và 5 (1)
Mà n^4 đồng dư với 0 và 1 trong phép chia cho 8 ; n^4 đồng dư với 0 và 1 trong phép chia cho 5 (2)
Từ (1)và(2) suy ra n^4 đồng dư với 1 trong phép chia cho 5 và 8. =>n^4-1 chia hết cho 5 và 8
Mà 5 và 8 nguyên tố cùng nhau
Suy ra n^4-1 chia hết cho 40
2)
Có P= x^2+3xy+y^2
=(x+y)^2+xy <= 4 + (x+y)/4 <= 4 +1/2 = 7/2