Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bước 1: Áp dụng quy tắc lũy thừa
Ta biết rằng:
\(a^{m} \cdot a^{n} = a^{m + n}\)
Nên:
\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{3} \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{5} \cdot \ldots \cdot \left(\left(\right. \frac{1}{4} \left.\right)\right)^{97} = \left(\left(\right. \frac{1}{4} \left.\right)\right)^{T}\)
Trong đó \(T\) là tổng các số mũ:
\(T = 3 + 5 + 7 + \ldots + 97\)
Bước 2: Tính tổng \(T\)
Dãy số \(3 + 5 + 7 + \ldots + 97\) là một cấp số cộng:
- Số hạng đầu: \(a = 3\)
- Số hạng cuối: \(l = 97\)
- Công sai: \(d = 2\)
Tính số lượng số hạng:
\(n = \frac{l - a}{d} + 1 = \frac{97 - 3}{2} + 1 = 47 + 1 = 48\)
Tính tổng:
\(T = \frac{n}{2} \left(\right. a + l \left.\right) = \frac{48}{2} \left(\right. 3 + 97 \left.\right) = 24 \cdot 100 = 2400\)
Kết quả cuối cùng:
\(\left(\left(\right. \frac{1}{4} \left.\right)\right)^{2400} = 4^{- 2400}\)
Đáp án: \(\boxed{4^{- 2400}}\)

a) Vì \(\hept{\begin{cases}\left|5-4x\right|\ge0\\\left|7y-3\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 5/4 ; y = 3/7
b) Vì \(\hept{\begin{cases}\left|x-3y-1\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 13 ; y = 4
a)do |5-4x|+|7y-3|=0,mà|5-4x| và|7y-3| đều lớn hơn hoặc = 0
suy ra 5-4x=7y-3=0 thì biểu thức mới thỏa mãn
(do mọi số trong dấu GTTĐ đều lớn hơn hoặc bằng 0)
tự giải nốt nhé

a, 1,5 +|2x - 2/3| = 3/2
|2x - 2/3| = 3/2 - 1,5
|2x - 2/3| = 0
<=> 2x - 2/3 = 0
<=> 2x = 0 + 2/3
<=> 2x = 2/3
<=> x = 2/3 : 2
<=> x = 1/3
Vậy x = 1/3
b, 3/4 - |1/4 - x| = 5/8
|1/4 - x| = 3/4 - 5/8
|1/4 - x| = 1/8
<=> 1/4 - x = 1/8
1/4 - x = /1/8
<=> x = 1/4 - 1/8
x = 1/4 - ( -1/8)
<=> x = 1/8
x = 3/8
Vậy x thuộc { 1/8 ; 3/8 }

Đặt A = 12 + 32 + 52 + ... + 972 + 992
Đặt B = 22 + 42 + 62 + ... + 982
Khi đó A + B = 12 + 22 + 32 + ... + 982 + 992
= 1.1 + 2.2 + 3.3 + ... + 98.98 + 99.99
= 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 98(99 - 1) + 99(100 - 1)
= 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - (1 + 2 + 3 + ... + 99)
= 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - 99.(99 + 1):2
= 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - 5050
Đặt C = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100
=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
3C = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 98.99.(100 - 97) + 99.100.(101 - 98)
3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
3C = 99.100.101
C = 99.100.101 : 3 = 333 300
Khi đó A+ B = C - 5050 = 333 300 - 5050 = 328 250
Lại có B = 22 + 42 + 62 + ... + 982
= 22(12 + 22 + 32 + ... + 492)
= 4(12 + 22 + 32 + ... + 492)
Đặt D = 12 + 22 + 32 + ... + 492
= 1.1 + 2.2 + 3.3 + ... + 49.49
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 49(50 - 1)
= 1.2. + 2.3 + 3.4 + ... + 49.50 - (1 + 2 + 3 + 4 + ... + 49)
= 1.2. + 2.3 + 3.4 + ... + 49.50 - 49.(49 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 49.50 - 1225
Khi đó : 1.2 + 2.3 + 3.4 + ... + 49.50
= (1.2.3 + 2.3.3 + ... + 49.50.3) : 3
= [1.2.3 + 2.3.(4 - 1) + ... + 49.50(51 - 48)] : 3
= (1.2.3 + 2.3.4 - 1.2.3 + ... + 49.50.51 - 48.49.50) : 3
= 49.50.51 : 3
= 41650
Khi đó D = 41650 - 1225 = 40425
Khi đó B = 40425 x 4 = 161700
Lại có : A + B = 328250
=> A + 161700 = 328250
=> A = 166550
Vậy 12 + 32 + 52 + ... + 972 + 992 = 166550

Bài làm:
a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)
\(=-\frac{1}{5}x^6y^3z^3\)
b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:
\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)
a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)
b) Với x = -1 ; y = -2 , z = 3
Thế vào ba đơn thức trên và đơn thức tích ta được :
\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)
\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)
\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)
\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)

Bài 1:
b) Ta có: \(D=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
\(=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot0\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
=0

(x+1)+(x+2)+(x+3)=4x
x+1+x+2+x+3=4x
(x+x+x)+(1+2+3)=4x
x*3+6=4x
6=1*x(bớt cả hai vế đi 3*x)
x=6/1(Tìm thừa số)
x=6

Theo tính chất dãy tỉ số bằng nhau
\(\frac{x-3}{7}\)=\(\frac{y+1}{2}\)=\(\frac{z+3}{4}\)=\(\frac{x-3-2y-2+3z+9}{7-4+12}\)=\(\frac{x-2y+3z+4}{15}\)=\(\frac{56+4}{15}\)=4
Có \(\frac{x-3}{7}\)=4⇒x=31
\(\frac{y+1}{2}\)=4⇒y=7
\(\frac{z+3}{4}\)=4⇒z=13
HT

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)
\(=\frac{9+31}{40}=\frac{40}{40}=1\)
Cứ thế là tìm x+1 rồi tìm x
y+3 y
x+5 z
Số số hạng trong dãy số 3;5;...;97 là:
\(\frac{\left(97-3\right)}{2}+1=\frac{94}{2}+1=47+1=48\) (số)
Tổng của dãy số 3;5;...;97 là:
\(\frac{48\left(97+3\right)}{2}=48\cdot\frac{100}{2}=48\cdot50=2400\)
\(\left(\frac14\right)^3\cdot\left(\frac14\right)^5\cdot\ldots\cdot\left(\frac14\right)^{97}\)
\(=\left(\frac14\right)^{3+5+\cdots+97}=\left(\frac14\right)^{2400}\)
- Số hạng đầu \(a_{1} = 3\)
- Công sai \(d = 2\)
- Số hạng cuối \(a_{n} = 97\)
Để tìm số số hạng \(n\), ta dùng công thức: \(a_{n} = a_{1} + \left(\right. n - 1 \left.\right) d\) Thay số vào: \(97 = 3 + \left(\right. n - 1 \left.\right) 2\) Giải phương trình: \(94 = \left(\right. n - 1 \left.\right) 2\) \(47 = n - 1\) \(n = 48\) Vậy có 48 số hạng trong dãy. Tổng của cấp số cộng là: \(S_{n} = \frac{n \left(\right. a_{1} + a_{n} \left.\right)}{2}\) \(S_{48} = \frac{48 \left(\right. 3 + 97 \left.\right)}{2} = \frac{48 \cdot 100}{2} = 2400\) 4. Thay tổng vào biểu thức: Vậy, biểu thức ban đầu trở thành: \(\left(\right. \frac{1}{4} \left.\right)^{2400}\) 5. Kết luận: \(\left(\right. \frac{1}{4} \left.\right)^{3} \cdot \left(\right. \frac{1}{4} \left.\right)^{5} \cdot \hdots \cdot \left(\right. \frac{1}{4} \left.\right)^{97} = \left(\right. \frac{1}{4} \left.\right)^{2400}\)