
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a)
\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)
b)
B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0

\(2020^2-2019^2=\left(2020-2019\right)\left(2020+2019\right)=1.4039=4039\)

d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)
\(\Leftrightarrow x=-10\)
Vậy x = -10 là nghiệm của phương trình.

Ta có: \(a+b+c=3\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow2\left(ab+bc+ca\right)=9-\left(a^2+b^2+c^2\right)=6\Rightarrow ab+bc+ca=3\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Mà a + b + c = 3 nên a = b = c = 1
Suy ra \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)