Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10

1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)

a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)

1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................

2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

a) Ta có \(\left(x-2\right)^2\ge0\forall x\)
=> Min A = 0
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy Min A = 0 <=> x = 2
b) Ta có \(\left(2x+1\right)^4\ge0\forall x\Rightarrow\left(2x+1\right)^4-98\ge-98\)
=> Min B = -98
Dấu "=" xảy ra <=> 2x + 1= 0 <=> x = -0,5
Vậy Min B = -98 <=> x = -0,5
c) Ta có C = |x - 10| + |x - 11|
= |x - 10| + |11 - x| \(\ge\left|x-10+11-x\right|=\left|1\right|=1\)
=> Min C = 1
Dấu "=" xảy ra <=> \(\left(x-10\right)\left(11-x\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-10\ge0\\11-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge10\\x\le11\end{cases}}\Leftrightarrow10\le x\le11\)
TH2 : \(\hept{\begin{cases}x-10\le0\\11-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le10\\x\ge11\end{cases}}\Leftrightarrow x\in\varnothing\)
Vậy Min C = 1 <=> \(10\le x\le11\)
a/ Với mọi y ta có :
\(\left(y^2-25\right)^4\ge0\)
\(\Leftrightarrow-\left(y^2-25\right)^4\le0\)
\(\Leftrightarrow10-\left(y^2-25\right)^4\le10\)
\(\Leftrightarrow A\le10\)
Dấu "=" xảy ra :
\(\Leftrightarrow\left(y^2-25\right)^4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
Vậy...
b/ Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(y-5\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x-4\right)^2\le0\\-\left(y-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow-\left(x-4\right)-\left(y-5\right)^2\le0\)
\(\Leftrightarrow-125-\left(x-4\right)^2-\left(y-5\right)^2\le-125\)
\(\Leftrightarrow B\le-125\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)
Vậy..