\(\left(y^2-25\right)^4\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

a/ Với mọi y ta có :

\(\left(y^2-25\right)^4\ge0\)

\(\Leftrightarrow-\left(y^2-25\right)^4\le0\)

\(\Leftrightarrow10-\left(y^2-25\right)^4\le10\)

\(\Leftrightarrow A\le10\)

Dấu "=" xảy ra :

\(\Leftrightarrow\left(y^2-25\right)^4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

Vậy...

b/ Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(y-5\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x-4\right)^2\le0\\-\left(y-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow-\left(x-4\right)-\left(y-5\right)^2\le0\)

\(\Leftrightarrow-125-\left(x-4\right)^2-\left(y-5\right)^2\le-125\)

\(\Leftrightarrow B\le-125\)

Dấu "=" xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)

Vậy..

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

14 tháng 3 2017

a;\(10-\left(y^2-25\right)^4\)

vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)

vậy giá trị lớn nhất của  biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)

b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)

=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125

\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)

14 tháng 3 2017

Còn những câu khác thì sau bạn?

11 tháng 2 2018

1. \(A=2x^2-5x-5\)

* Tại \(x=-2\) giá trị của biểu thức là :

\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)

\(A=8-\left(-10\right)-5=13\)

*Tại \(x=\dfrac{1}{2}\)

\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)

\(A=-7\)

11 tháng 2 2018

Câu 3:

a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)

..........................\(\Leftrightarrow x=3\)

Vậy MIN A = 9 \(\Leftrightarrow x=3\)

P/s: câu b coi lại đề

c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)

Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy .............................

Câu 5:

Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)

Để A nguyên thì \(2⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do đó:

\(x-3=-2\Rightarrow x=1\)

\(x-3=-1\Rightarrow x=2\)

\(x-3=1\Rightarrow x=4\)

\(x-3=2\Rightarrow x=5\)

Vậy .....................

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

8 tháng 7 2021

a) Ta có \(\left(x-2\right)^2\ge0\forall x\)

=> Min A = 0

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy Min A = 0 <=> x = 2

b) Ta có \(\left(2x+1\right)^4\ge0\forall x\Rightarrow\left(2x+1\right)^4-98\ge-98\)

=> Min B = -98

Dấu "=" xảy ra <=> 2x + 1= 0 <=> x = -0,5

Vậy Min B = -98 <=> x = -0,5

c) Ta có  C = |x - 10| + |x - 11| 

= |x - 10| + |11 - x| \(\ge\left|x-10+11-x\right|=\left|1\right|=1\)

=> Min C = 1

Dấu "=" xảy ra <=> \(\left(x-10\right)\left(11-x\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-10\ge0\\11-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge10\\x\le11\end{cases}}\Leftrightarrow10\le x\le11\)

TH2 : \(\hept{\begin{cases}x-10\le0\\11-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le10\\x\ge11\end{cases}}\Leftrightarrow x\in\varnothing\)

Vậy Min C = 1 <=> \(10\le x\le11\)