![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2}{3}\)x\(^3\)y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. a: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{y\left(x-y\right)}=\dfrac{x+2x-y}{y\left(x-y\right)}=\dfrac{3x-y}{y\left(x-y\right)}\) b: \(=\dfrac{x\left(x+3\right)}{\left(x+3\right)^2}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\) \(=\dfrac{x}{x+3}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\) \(=\dfrac{x^2-3x+3x+9-6x}{\left(x-3\right)\left(x+3\right)}\) \(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\) c: \(=\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\) \(=\dfrac{x^2+9x-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\) \(=\dfrac{x^2+9x-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x-3}\) d: \(=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\) 1,Thực hiện phép tính : a, (x + 2)9 : (x + 2)6 =(x+2)9-6 =(x+2)3 b, (x - y) 4 : (x - 2)3 =(x-y)4-3 =x-y c, ( x2+ 2x + 4)5 : (x2 + 2x + 4) =(x2+2x+4)5-1 =(x2+2x+4)4 d, 2(x2 + 1)3 : 1/3(x2 + 1) =(2÷1/3).[(x2+1)3÷(x2+1)] =6(x2+1)2 e, 5 (x - y)5 : 5/6 (x - y)2 =(5÷5/6).[(x-y)5÷(x-y)2] =6(x-y))3 a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\) Bài 2 . a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\) \(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) \(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\) \(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\) \(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\) b) Sai đề hay sao ý c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\) \(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\) \(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\) \(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\) \(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\) d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\) \(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\) \(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\) ..... \(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\) \(=\dfrac{32}{1-x^{32}}\) a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\) \(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\) \(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\) \(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\) \(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\) \(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\) b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\) \(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\) \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\) \(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\) \(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\) \(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\) \(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\) \(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\) \(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\) \(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\) 2) a) \(\dfrac{1}{x}.\dfrac{6x}{y}\) \(=\dfrac{6x}{xy}\) \(=\dfrac{6}{y}\) b) \(\dfrac{2x^2}{y}.3xy^2\) \(=\dfrac{2x^2.3xy^2}{y}\) \(=\dfrac{6x^3y^2}{y}\) \(=6x^3y\) c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\) \(=\dfrac{15x.2y^2}{7y^3.x^2}\) \(=\dfrac{30xy^2}{7x^2y^3}\) \(=\dfrac{30}{7xy}\) d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\) \(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\) \(=\dfrac{2y}{5x\left(x-y\right)}\) a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\) \(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\) \(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\) b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\) \(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\) \(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\) \(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\) a. \(\dfrac{x+3}{x-2}+\dfrac{4+x}{2-x}\\ =\dfrac{x+3}{x-2}-\dfrac{4+x}{x-2}\\ =\dfrac{x+3-4-x}{x-2}\\ =-\dfrac{1}{x-2}\) b. \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\) \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\) \(=\dfrac{x^2+x}{2x\left(x+3\right)}+\dfrac{4x+6}{2x\left(x+3\right)}=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}\) \(=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x^2+3x+2x+6}{2x\left(x+3\right)}\) \(=\dfrac{x\left(x+3\right)+2\left(x+3\right)}{2x\left(x+3\right)}=\dfrac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\) \(=\dfrac{x+2}{2x}\) c. \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\) \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\) \(=\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\) \(=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\) \(=\dfrac{1}{x}\) d. \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\) \(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}:\dfrac{-x\left(x+3\right)}{3x-1}\) \(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}.\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}\) \(=-\dfrac{2}{x^2}\) \(1.\) \(a.\) \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\) \(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\) \(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\) \(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\) \(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\) \(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\) \(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\) \(=x-1\) \(b.\) \(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\) \(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\) \(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\) \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\) \(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\) \(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\) \(=\dfrac{2y}{\left(x-y\right)}\) Tương tự các câu còn lại