Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\) và \(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng
\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:
\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)
\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).
Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

Áp dụng công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega^2} \Rightarrow\) \(8^2+\frac{12^2}{\omega^2} = 6^2+\frac{16^2}{\omega^2} \Rightarrow \omega = 2 \ (rad/s) \Rightarrow f = \frac{1}{\pi} \ Hz\)

Ta có :
\(64^2_1x=36x^2_2=48^2\)
=> \(64x_1\le48^2\)
=> \(36x_2\le48^2\)
=> A1 = 6 (cm)
=> A2 = 8 (cm)
=> \(\frac{V_2}{V_1}=\frac{\omega\sqrt{A^2_2-x^2_2}}{\omega\sqrt{A^2_1-x^2_1}}=\frac{\sqrt{A^2_2-x^2_2}}{\sqrt{A^2_1-x^2_1}}=\frac{4}{3\sqrt{3}}\)
Vậy V2 = \(\frac{4.18}{3\sqrt{3}}=8\sqrt{3}\) (cm/giây)

Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)
Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)

Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:
A = 2,3 cm và φ = 0,73π
Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).

mk nghĩ làm bài này như sau:
Ta có:\(\begin{cases}T1=2\pi\sqrt{\frac{l1}{g}}\\T2=2\pi\sqrt{\frac{l2}{g}}\end{cases}\)\(\Rightarrow\sqrt{\frac{l1.l2}{g^2}}=\frac{T1.T2}{\left(2\pi\right)^2}\)\(\Rightarrow\frac{1}{\sqrt{g}}.\sqrt{\frac{l1.l2}{g}}=\frac{T1.T2}{\left(2\pi\right)^2}\)
\(\Rightarrow\) \(T3=2\pi\sqrt{\frac{l1.l2}{g}}=\frac{\sqrt{g}}{2\pi}T1.T2\)
Chọn C
1/ Công thức cần nhớ: \(T=2\pi\sqrt{\frac{l}{g}}\)
\(\Rightarrow T_1=2\pi\sqrt{\frac{l_1}{g}}=\frac{2\pi}{\omega_1}\Leftrightarrow\omega_1^2=\frac{g}{l_1}\Leftrightarrow l_1=\frac{g}{36}\)
\(\Rightarrow T_2=2\pi\sqrt{\frac{l_2}{g}}=\frac{2\pi}{\omega_2}\Leftrightarrow\omega_2^2=\frac{g}{l_2}\Leftrightarrow l_2=\frac{g}{64}\)
\(l=\frac{l_1l_2}{l_1+l_2}\Rightarrow T=2\pi\sqrt{\frac{l}{g}}=\frac{2\pi}{\omega}\)
\(\Rightarrow\omega^2=\frac{g}{l}=\frac{g\left(l_1+l_2\right)}{l_1l_2}=\frac{g\left(\frac{g}{36}+\frac{g}{64}\right)}{\frac{g}{36}.\frac{g}{64}}=\frac{\frac{25}{576}g^2}{\frac{g^2}{2304}}=100\Rightarrow\omega=10rad/s\)
2/ \(\Delta t_1=\frac{1}{\omega}arc\sin\left(\frac{4}{5}\right)=...\)
\(\Delta t_2=\frac{1}{\omega}arc\sin\left(\frac{3}{5}\right)=...\)
\(\sum t=\Delta t_1+\Delta t_2=...\)