Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a Ta có
B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100
= ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)
= 0 +0+... +0 (25 cs 0)
=0 x25=0

A=1-2+3-4+...+99-100 SSH=(100-1):1+1=100 Sh
=>A=(1-2)+(3-4)+....+(99-100)
vì chia thành cặp suy ra 100:2 =50 cặp
A=(-1)+(-1)+...(-1)
A=(-1).50
A=-50

a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
b) \(5^3\cdot2-100:4+2^3\cdot5\)
\(=125\cdot2-25+8\cdot5\)
\(=250-25+40\)
\(=225+40=265\)
c) \(6^2:9+50\cdot2+3^3-3\)
\(=36:9+100+27-3\)
\(=4+100+27-3\)
\(=104+27-3=131-3=128\)
d) \(3^2\cdot5+2^3\cdot10-81:3\)
\(=9\cdot5+8\cdot10-27\)
\(=45+80-27\)
\(=125-27=98\)
e) \(5^{13}:5^{10}-25\cdot2^2\)
\(=5^{13-10}-5^2\cdot2^2\)
\(=5^3-\left(5\cdot2\right)^2\)
\(=125-10^2\)
\(=125-100=25\)
f) \(20:2^2+5^9:5^8\)
\(=20:4+5^{9-8}\)
\(=5+5^1=5+5=10\)
g) \(100:5^2+7\cdot3^2\)
\(=10^2:5^2+7\cdot9\)
\(=\left(10:5\right)^2+63\)
\(=2^2+63=4+63=67\)
h) \(84:4+3^9:3^7+5^0\)
\(=21+3^{9-7}+1\)
\(=21+3^2+1\)
\(=21+9+1=30+1=31\)
i) \(29-\left[16+3\cdot\left(51-49\right)\right]\)
\(=29-\left[16+3\cdot2\right]\)
\(=29-\left[16+6\right]\)
\(=29-22=7\)
j) \(\left(15^{19}:5^{17}+3\right)\cdot0:7\)
\(=\left[\left(3\cdot5\right)^{19}:5^{17}+3\right]\cdot0\)
Vì số nào nhân cho 0 cũng bằng 0 nên giá trị biểu thức trên bằng 0
k) \(7^9:7^7-3^2+2^3\cdot5\)
\(=7^{9-7}-9+8\cdot5\)
\(=7^2-9+40\)
\(=49-9+40=40+40=80\)
l) \(1200:2+6^2\cdot2^1+18\)
\(=600+36\cdot2+18\)
\(=600+72+18\)
\(=600+\left(72+18\right)=600+90=690\)
m) \(5^9:5^7+70:14-20\)
\(=5^{9-7}+5-20\)
\(=5^2+5-20\)
\(25+5-20=30-20=10\)
Những câu sau mình làm sau nhé bạn!!!!!!!

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!

1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.

a)64:2mũ5×30×4
= 64 : 32 x 30 x 4
= 240
b)3 mũ 2× 5 - 2 mũ 2×7+2 mũ 0 × 5
= 9 x 5 - 4 x 7 + 1 x 5
= 45 - 28 + 5
= 22
c)2 mũ 3-5 mũ 3÷5 mũ 2 + 12×2 mũ 2
= 8 - 125 : 25 + 12 x 4
= 8 - 5 + 48
= 51
d)2[(7-3 mũ 3÷3 mũ 2) chia 2 mũ 2 + 99]-100
= 2[( 7 - 27 : 9) : 4 + 99] - 100
= 2[4 : 4 + 99] - 100
= 2. 100 - 100
= 200 - 100
= 100
e)4[(3 + 3^7:3^4)chia 10 + 97]-300
= 4[( 3 + 3^3) : 10 + 97] - 300
= 4[ 30 : 10 + 97 ] - 300
= 4. 100 - 300
= 400 - 300
= 100
f)2^2 x 5 [(5 mũ 2 cộng 2 mũ 3) chia 11 - 2] - 3^2 x 2
= 4 x 5 [ (25 + 8 ) : 11 - 2] - 9 x 2
= 20 [ 33 : 11 - 2] - 18
= 20. 1 - 18
= 20 - 18
= 2
Bài 2:
\(3A=3+3^2+...+3^{101}\)
=>2A=3^101-1
=>\(A=\dfrac{3^{101}-1}{2}\)