Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Sửa đề: Tính BK, AK
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
\(\Leftrightarrow AC=\sqrt{16}=4cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AK là đường cao ứng với cạnh huyền BC, ta được:
\(AK\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AK\cdot5=3\cdot4=12\)
hay \(AK=\frac{12}{5}=2.4cm\)
Áp dụng định lí Pytago vào ΔAKB vuông tại K, ta được:
\(AK^2+KB^2=AB^2\)
\(\Leftrightarrow2.4^2+KB^2=3^2\)
\(\Leftrightarrow KB^2=9-5.76=3.24\)
\(\Leftrightarrow KB=\sqrt{3.24}=1.8cm\)
Vậy: AK=2,4cm; KB=1,8cm
b) Xét ΔABC vuông tại A có:
\(\left\{{}\begin{matrix}\cos_C=\frac{CA}{CB}\\\sin_C=\frac{AB}{BC}\\\tan_C=\frac{AB}{AC}\end{matrix}\right.\)
Ta có: \(H=5\left(\cos_C+\sin_C\right)-2\sqrt{1-\tan_C}\)
\(=5\left(\frac{CA}{BC}+\frac{AB}{BC}\right)-2\cdot\sqrt{1-\frac{AB}{AC}}\)
\(=5\cdot\frac{AB+AC}{BC}-2\cdot\sqrt{\frac{AC-AB}{AC}}\)
\(=5\cdot\frac{3+4}{5}-2\cdot\sqrt{\frac{4-3}{4}}\)
\(=7-2\cdot\sqrt{\frac{1}{4}}\)
\(=7-2\cdot\frac{1}{2}=7-1=6\)

4. Dễ thấy \(\Delta AML\approx\Delta LKC\left(g-g\right)\)
\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)
\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)
Lại có \(\Delta AML\approx\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)
\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)
1. Ta có \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)
Mặt khác \(BC=\sqrt{11}\Rightarrow BH+CH=11\)
\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)
\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\) và \(BH=\frac{77-11\sqrt{35}}{2}\)
Có BH, CH và BC tính đc AB, AC \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)
Từ đó tính đc chu vi tam giác ABC.
2. Để cj gửi hình qua gmail cho
3. Chỉ còn cách làm từng bước thôi e
\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)
Để viết liên phân số, ta bấm phím tìm thương và số dư:
(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)
- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết \(B=32+\frac{1}{1+...}\)
- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết \(B=32+\frac{1}{1+\frac{1}{3+...}}\)
- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)
- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)
...
Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3
Kết quả: \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)

A B C H D I
Từ D hạ DI vuông góc BC tại I. Có ngay I là trung điểm cạnh BC và AI = BI = CI
Áp dụng ĐL Pytagoras có DH2 + AH2 = DI2 + IH2 + AI2 - IH2 = DI2 + BI2 = DB2 (đpcm).

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
1. ĐK:x\(\ge0\)
\(\sqrt{x^2-4x+4}=2x\Leftrightarrow\sqrt{x^2-2.x.2+2^2}=2x\Leftrightarrow\sqrt{\left(x-2\right)^2}=2x\Leftrightarrow\left|x-2\right|=2x\left(1\right)\)Nếu \(x\ge2\) thì (1)\(\Leftrightarrow x-2=2x\Leftrightarrow x=-2\left(ktm\right)\)
Nếu \(0\le x< 2\) thì (1)\(\Leftrightarrow\)\(2-x=2x\Leftrightarrow2=3x\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)
Vậy S={\(\dfrac{2}{3}\)}
2. A B C K D
Ta có BD=BA\(\Rightarrow\)△ABD cân tại B\(\Rightarrow\)\(\widehat{BAD}=\widehat{BDA}\)(2)
Ta lại có \(\widehat{BDA}+\widehat{KAD}=90^0\)(3)
\(\widehat{BAD}+\widehat{DAC}=90^0\)(4)
Từ (2),(3),(4)\(\Rightarrow\widehat{KAD}=\widehat{DAC}\)\(\Rightarrow\)AD là tia phân giác của \(\widehat{KAC}\)
Ta có AD là tia phân giác của △KAC\(\Rightarrow\)\(\dfrac{KD}{DC}=\dfrac{AK}{AC}\)(5)
Xét △BKA và △AKC có
\(\widehat{BKA}=\widehat{CKA}=90^0\)
\(\widehat{ABK}=\widehat{KAC}\)(cùng phụ \(\widehat{BAK}\))
Suy ra △BKA \(\sim\) △AKC
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{AK}\Rightarrow\dfrac{AK}{AC}=\dfrac{BK}{AB}\Rightarrow\dfrac{AK}{AC}=\dfrac{KB}{DB}\)(vì AB=BD)(6)
Từ (5),(6)\(\Rightarrow\dfrac{KD}{DC}=\dfrac{KB}{DB}\Rightarrow\dfrac{KD}{KB}=\dfrac{DC}{DB}\)\(\Rightarrowđpcm\)