K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔHBA\(\sim\)ΔABC

ΔHAC\(\sim\)ΔABC

ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)

Do đo: DB=30/7cm; DC=40/7cm

c: Xét ΔBAC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.a) Tìm các tam giác đồng dạng với tam giác BDH.b).Tính độ dài HD, BHc).Tính độ dài HEBài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:a) BH.BD = BK.BCb)CH.CE = CK.CBc) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung...
Đọc tiếp

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác BDH.

b).Tính độ dài HD, BH

c).Tính độ dài HE

Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a) BH.BD = BK.BC

b)CH.CE = CK.CB

c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.

Bài 8 :  Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:

a) Tam giác BFM đồng dạng với tam giác CEM.

b) Tam giác BHC và tam giác CEM đồng dạng.

c) ME + MF không đổi khi M di động trên BC.

Bài 9:  Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm  ; BC = 20 cm  ; AA’  = 15cm.

a)   Tính thể tích hình hộp chữ nhật.

b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.

Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.

Tính :  a) Đường chéo AC

b) Tính đường cao SO và thể tích hình chóp.

0
28 tháng 6 2020

A B C D H E K I F

a) Xét t/giác HBA và t/giác ABC

có: \(\widehat{B}\):chung

 \(\widehat{BHA}=\widehat{A}=90^0\)(gt)

=> t/giác HBA đồng dạng t/giác ABC (g.g)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 (định lí Pi - ta - go)

=> AC2 = BC2 - AB2 = 102 - 62 = 64

=> AC = 8 (cm)

Ta có: t/giác HBA đồng dạng t/giác ABC

=> HB/AB = AH/AC = AB/BC

hay HB/6 = AH/8 = 6/10 = 3/5

=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)

c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)

=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)

Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)

 \(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)

=> \(\widehat{AHK}=\widehat{C}\) (2)

Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)

Xét t/giác AKI và t/giác ABC

có: \(\widehat{A}=90^0\): chung

 \(\widehat{AIK}=\widehat{C}\)(cmt)

=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC 

d) Do AD là đường p/giác của t/giác ABC =>  \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)

<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)

=> BD = 10 - 40/7 = 30/7 (cm)

DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)

DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)

Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)

12 tháng 5 2021

A B C 6 8 10 H D D

a, dễ mà dài, bạn tự làm nhé 

b, Vì AD là đường pg của tam giác ABC nên 

\(\frac{AC}{AB}=\frac{CD}{BD}\)( tính chất )

mà \(BD=BC-CD=10-CD\)(*)

\(\Rightarrow\frac{8}{6}=\frac{CD}{10-CD}\Rightarrow CD=\frac{40}{7}\)cm 

Theo (*) suy ra : \(BD=10-\frac{40}{7}=\frac{30}{7}\)cm