Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình
1. Gọi \(K\) là điểm chính giữa của nửa đường tròn. Xét hai tam giác \(\Delta KOD\) và \(\Delta OCH\) có \(OK=CO=R\), \(\angle KOD=\angle OCH\) (so le trong) và \(OD=CH\) (giả thiết). Suy ra hai tam giác \(\Delta KOD\) và \(\Delta OCH\)
bằng nhau (c.g.c). Do đó \(\angle KDO=90^{\circ}\to D\) nằm trên đường tròn đường kính OK.
Khi C trùng A thì D trùng với O và khi C trùng với B thì D trùng với O. Do đó tập hợp D sẽ là toàn bộ đường tròn đường kính OK.
2. Kéo dài tia DC cắt (O) ở điểm thứ hai T. Do tứ giác ACTB nội tiếp nên góc TBA = góc DCA = 60 độ. Vậy T là điểm cố định. Do tam giác ACD đều và M là trung điểm CD nên AM vuông góc với CD. Suy ra M nhìn đoạn AT dưới 1 góc vuông. Vậy M nằm trên đường tròn đường kính AT.
Vì C chỉ chạy trên nửa đường tròn, khi C trùng A thì M trùng A và khi C trùng với B thì M trùng với T. Vậy M chạy trên nửa đường tròn đường kính AT, trong nửa mặt phẳng không chứa điểm B.
Chỉ vậy thôi.
![](https://rs.olm.vn/images/avt/0.png?1311)
*Chứng minh thuận:
Từ O kẻ đường thẳng vuông góc với AB cắt nửa đường tròn đường kính AB tại P.
Vì O cố dịnh, đường tròn đường kính AB cố định nên P cố định.Nối PD
Ta có: OP // CH (cùng ⊥ AB)
Xét hai tam giác HCO và DOP ta có:
OD = CH (gt)
Khi C chuyển động trên nửa đường tròn đường kính AB thì D thay đổi tạo với hai đầu đọan thẳng OP cố định một góc
Vậy D chuyển động trên đường tròn đường kính OP
*Chứng minh đảo
Lấy điểm D’ bất kì trên đường tròn đường kính OP ,nối OD’ cắt nửa đường tròn đường kính AB tại C’.Nối PD’ và C’H’ ⊥ AB
Xét hai tam giác C’H’O và PD’O ta có:
Vậy △ C’H’O = △ PD’O (c.g.c) ⇒ C’H’ = OD’
Quỹ tích điểm các điểm D khi C chuyển động trên nửa đường tròn đường kính AB là đường tròn đường kính OP, với
![](https://rs.olm.vn/images/avt/0.png?1311)
* Kết luận :
Quỹ tích các điểm D khi C chạy trên nửa đường tròn đường kính AB là đường tròn đường kính OP, với \(OP=\dfrac{AB}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(\widehat{CHB}=90^0\)
=>ΔCHB vuông tại H
=>ΔCHB nội tiếp đường tròn đường kính CB(4)
Ta có: \(\widehat{CKB}=90^0\)
=>ΔCKB vuông tại K
=>ΔCKB nội tiếp đường tròn đường kính CB(5)
Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB
b:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)
\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)
Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)
Ta có: CHBK là tứ giác nội tiếp
=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)
Xét ΔOAC có OC=OA
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)(3)
Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//AC
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tứ giác CHBK có
\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)
=>CHBK là tứ giác nội tiếp
=>C,H,B,K cùng thuộc một đường tròn
![](https://rs.olm.vn/images/avt/0.png?1311)
Tôi cũng có bài khó giống ý hệt bạn,vậy bạn có hướng làm chưa
giải quỹ tích chứ j