\(^4\) + b\(^4\)     ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

\(A=a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2\)

thay vào ta được A = 97

\(B=a^8+b^8=\left(a^4+b^4\right)^2-2a^4b^4=A^2-2\left(ab\right)^4\)

thay vào ta được B = 9337

\(C=a^5+b^5=\left(a^4+b^4\right)\cdot\left(a+b\right)-a^4b-ab^4=A\cdot\left(a+b\right)-ab\left(a^3+b^3\right)\)

\(=A\cdot\left(a+b\right)-ab\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\)

thay vào ta được c = 211

\(D=a^7+b^7=\left(a^5+b^5\right)\left(a^2+b^2\right)-a^5b^2-a^2b^5\)

\(=C\cdot\left[\left(a+b\right)^2-2ab\right]-\left(ab\right)^2\left(a^3+b^3\right)\)

\(=C\cdot\left[\left(a+b\right)^2-2ab\right]-\left(ab\right)^2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\)

đến đây lại thế vào là tính được

Chủ yếu là sử dụng hằng đẳng thức tách tới tách lui nha bạn :D

1 tháng 10 2016

ukm, tks bn nhìu na!!!

 

9 tháng 8 2017

\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{\left(a+b\right)^2}{8}\)

\(\Leftrightarrow\frac{a^2-ab+b^2}{2}-\frac{a^2+2ab+b^2}{8}\ge0\)

\(\Leftrightarrow\frac{4a^2-4ab+4b^2-a^2-2ab-b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3a^2-6ab+3b^2}{8}\ge0\)

\(\Leftrightarrow\frac{3\left(a-b\right)^2}{8}\ge0\) (luôn đúng \(\forall a;b\))

Vậy \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

20 tháng 6 2019

\(4^{a.b.c.d}=\left(4^a\right)^{bcd}=5^{bcd}=\left(5^b\right)^{cd}=6^{cd}=\left(6^c\right)^d=7^d=8\)

=> \(2^{2abcd}=8=2^3\Rightarrow2abcd=3\Rightarrow abcd=\frac{3}{2}\)

\(TDB:\)

   \(4^a=8\Leftrightarrow a=1,5\)

   \(5,5^b=8\Rightarrow b=1,219\)

  \(6,6^c=8\Rightarrow c=1,101\)

  \(7,7^d=8\Rightarrow d=1,018\)

\(\Rightarrow a.b.c.d=1,5\times1,219\times1,101\times1,018=2,049\)

9 tháng 3 2019

d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x-2}{5}-5\)

\(\Leftrightarrow\frac{5\left(5x+2\right)}{30}-\frac{10\left(8x-1\right)}{30}=\frac{6\left(4x-2\right)}{30}-\frac{150}{30}\)

\(\Leftrightarrow25x+10-80x+10=24x-12-150\)

\(\Leftrightarrow25x-80x-24x=-12-150-10-10\)

\(\Leftrightarrow-79x=-182\)

\(\Leftrightarrow x=\frac{182}{79}\).

Vậy tập nghiệm phương trình \(s=\left\{\frac{182}{79}\right\}\)

9 tháng 3 2019

a)\(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)

\(\Leftrightarrow\frac{3\left(3x+2\right)}{6}-\frac{3x+1}{6}=\frac{10}{6}+\frac{12x}{6}\)

\(\Leftrightarrow9x+6-3x+1=10+12x\)

\(\Leftrightarrow9x-3x-12x=10-6-1\)

\(\Leftrightarrow-6x=3\)

\(\Leftrightarrow x=\frac{-1}{2}\).

Vậy tập nghiệm phương trình \(S=\left\{\frac{-1}{2}\right\}\)

8 tháng 7 2018

a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(...\)

\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2A=3^{64}-1\)

\(A=\frac{3^{64}-1}{2}\)

1a)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi x=y=1

b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi a=b=c=0

7 tháng 9 2018

B1:a)(3x-5)2-(3x+1)2=8

[(3x-5)+(3x+1)].[(3x-5)-(3x+1)]=8

(3x-5+3x+1)(3x-5-3x-1)=8

9x2-15x-9x2-3x-15x+25+15x+5+9x2-15x-9x2-3x+3x-5-3x-1=8

-36x+24=8

-36x=8-24=16

x=16:(-36)=\(\dfrac{-4}{9}\)

Bài 5: 

a: \(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)

b: \(=\left(2xy^2-3xy^2+1\right)\left(2xy^2+3xy^2-1\right)\)

\(=\left(1-xy^2\right)\left(5xy^2-1\right)\)

Bài 6:

a: \(\left(a+b+c-d\right)\left(a+b-c+d\right)\)

\(=\left(a+b\right)^2+\left(c-d\right)^2\)

\(=a^2+2ab+b^2+c^2-2cd+d^2\)

b: \(\left(a+b-c-d\right)\left(a-b+c-d\right)\)

\(=\left(a-d\right)^2-\left(b-c\right)^2\)

\(=a^2-2ad+d^2-b^2+2bc-c^2\)

13 tháng 8 2020

a) A = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b)

= 23 - 3.(-1).2 = 8 + 6 = 14

b) B = a4 + b4 = a4 - 2a2b2 + b4 + 2a2b2 = (a2 - b2)2 + 2a2b2 

= (a - b)2(a + b)2 + 2(ab)2 = (a2 - 2ab + b2)(a + b)2 + 2(ab)2

= (a + b)4 + 2(ab)2 - 4ab(a + b)2 = 24 + 2.(-1)2 - 4.(-1).22 = 16 + 2 + 16 = 34

c) Ta có: a2 + b2 = (a2 + 2ab + b2) - 2ab = (a + b)2 - 2ab = 22 - 2.(-1) = 4 + 2 = 6

=> (a2 + b2)(a3 + b3) =  6.14 = 84

=> a5 + a2b3 + a3b2 + b5 = a5 + b5 + a2b2(a + b) = 84

=>C = 84 - (ab)2(a + b) = 84 - (-1)2.2 = 82

d) D = a6 + b6 = a6 + 3a4b2 + 3a2b4 + a6 - 3a2b2(a2 + b2) = (a2 + b2)3 - 3(ab)2(a2 + b2) = 63 - 3(-1)2. 6 = 198

13 tháng 8 2020

a) Ta có : a + b = 2

=> (a + b)3 = 8

=> a3 + b3 + 3a2b + 3ab2 = 8

=> a3 + b3 + 3ab(a + b) = 8

=> a3 + b3 - 6 = 8

=> a3 + b3 = 14

b) Ta có a + b = 2

=> (a + b)4  = 16

=> a4 + b4 + 4a3b + 4ab3 = 16

=> a4 + b4 + 4ab(a2 + b2) = 16 (1)

Lại có a + b = 2

=> (a + b)2 = 4

=> a2 + b2 + 2ab = 4

=> a2 + b2 = 6

Khi đó (1) <=> a4 + b4 - 24 = 16

=> a4 + b4 = 40

c) a + b = 2

=> (a + b)5 = 32

=> a5 + b5 + 5a4b + 5ab4 = 32

=> a5 + b5 + 5ab(a3 + b3) = 32

Vận dụng kết quả câu b

=> a5 + b5 - 70 = 32 

a5 + b5 = 102

d) a + b = 2

=> (a + b)6 = 64

=> a6 + b6 + 6a5b + 6ab5 = 64

=> a6 + b6 + 6ab(a4 + b4) = 64

Vận dụng kết quả câu c 

=> a6 + b6 - 240 = 64

=> a6 + b6 = 304