\(a^3+b^3=2\) chứng minh rằng \(a+b\le2\)

( Gợi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Giả sử a+b>2

=>\(a^3+b^3+3ab\left(a+b\right)>\left(a+b\right)^3=2^3=8\)

=>\(2+3ab\left(a+b\right)>8\)

=>\(3ab\left(a+b\right)>6\)

=>\(ab\left(a+b\right)>2\)

=>\(ab\left(a+b\right)>a^3+b^3\)

=>\(0>a^3+b^3-ab\left(a+b\right)\)

=>\(0>\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)

=>\(0>\left(a+b\right)\left(a^2-2ab+b^2\right)\)

=>\(0>\left(a+b\right)\left(a-b\right)^2\) 

Vì a+b>2 (điều đã giả sử) và (a-b)2\(\ge0\) <=>\(\left(a+b\right)\left(a-b\right)^2\ge0\)

=>\(0>\left(a+b\right)\left(a-b\right)^2\) là vô lý 

=>\(a+b\le2\)

Ta có đpcm
30 tháng 9 2016

Who?

Toán lớp 8