Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a | b | c | d | e | |
5 | |||||
4 | |||||
3 | |||||
2 | |||||
1 |
Ta đánh dấu bảng 5x5 như trên và không mất tính tổng quát, giả sử quân mã ban đầu ở vị trí a1. Khi đó một đường đi của quân mã để đi hết tất cả các ô trên bàn cờ (với điều kiện mỗi ô chỉ được đi qua 1 lần) là:
a1-c2-e1-d3-e5-c4-a5-b3-c1-e2-d4-b5-a3-b1-d2-e4-c5-a4-b2-d1-e3-d5-b4-a2-c3.
cái này đúng rồi á chị nhưng mà nhìn bàn cờ nó cũng cứ kiểu gì ấy....
Hì hì...

Cho bàn cờ 5 *5 dùng các số tự nhiên từ 1 - 25 điền vào bàn cờ sao cho tổng các số ở hàng ngang, cột dọc , đường chéo bằng nhau. Chứng tỏ rằng với các bàn cờ a*a với a lẻ ta luôn có quy luật điền giống nhau. Bạn dùng ma phương thử đi.

Cho bàn cờ 5 *5 dùng các số tự nhiên từ 1 - 25 điền vào bàn cờ sao cho tổng các số ở hàng ngang, cột dọc , đường chéo bằng nhau. Chứng tỏ rằng với các bàn cờ a*a với a lẻ ta luôn có quy luật điền giống nhau. Bạn dùng ma phương thử xem.
Cho bàn cờ 5 *5 dùng các số tự nhiên từ 1 - 25 điền vào bàn cờ sao cho tổng các số ở hàng ngang, cột dọc , đường chéo bằng nhau. Chứng tỏ rằng với các bàn cờ a*a với a lẻ ta luôn có quy luật điền giống nhau. Bạn dùng ma phương thử xem.

Kích cỡ của bàn cờ là bao nhiêu vậy bạn. Nếu là 8x8 thì bàn này không có 2 số kề nhau nào có hiệu \(\ge\)9 đâu nhé.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
Lê Song Phương bàn cờ kích cỡ 8x8 bạn ạ. Kề là chung đỉnh vs chung cạnh.

đây là toán tổ hợp rời rạc nên là bài của ĐT nên chắc em hiểu khái niệm về tổ hợp và chỉnh hợp chập k của n rồi nhỉ?
Ta sẽ có bài tổng quát sau nhé:
Cho hcn nx(n(n-1)+1) được tô bởi 2 màu xanh đỏ, Chứng minh rằng luôn tồn tại 1 hcn đặc biệt mà với mọi cách tô ta luôn có 4 góc cùng màu
CM: với n lẻ, (TH n chẵn CM tương tự)
Trong 1 cột luôn có ít nhất \(\frac{n+1}{2}\)ô cùng màu, và có \(\frac{n+1}{2}.C^{\frac{n+1}{2}}_n\)cách sắp xếp chúng trong cột 1
Mà có tất cả \(n^3-n^2+n\)ô => sẽ có ít nhất \(\frac{n^3-n^2+n+1}{2}\)ô cùng màu
do vậy trong n(n-1) cột còn lại luôn tồn tại 1 cột có cách tô màu cùng với cách tô ở cột 1
đó chính là hình chữ nhật cần tìm
ÁP DỤNG BÀI NÀY: ta dễ dàng tìm ra n=7
lời giải tổng quát có thể hơi khó hiểu nhưng áp dụng cụ thể cho bài này em sẽ thấy dễ hieur nhé!