K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy quen quen.

28 tháng 8

ĐÂY LÀ CMATH phải không

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

a: Kẻ OI⊥CD tại I

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID

ΔOMN cân tại O

mà OI là đường cao

nên I là trung điểm của MN

=>IM=IN

Ta có: IM+MC=IC

IN+ND=ID

mà IM=IN và IC=ID

nên MC=ND

b: ΔOMN vuông tại O có OM=ON

nên ΔOMN vuông cân tại O

=>\(MN^2=OM^2+ON^2=2\cdot OM^2\)

=>\(MN=OM\cdot\sqrt2\)

Vì CM=MN=ND

nên \(CM=MN=ND=\frac{CD}{3}\)

=>\(CD=3\cdot MN=3\sqrt2\cdot OM\)

I là trung điểm của CD

=>\(IC=\frac{CD}{2}=\frac{3\sqrt2}{2}\cdot OM\)

ΔOMN vuông cân tại O

=>\(\hat{OMI}=45^0\)

Xét ΔOMI vuông tại I có \(\hat{OMI}=45^0\)

nên ΔOMI vuông cân tại I

=>\(IM=IO\)

ΔOMI vuông tại I

=>\(IM^2+IO^2=OM^2\)

=>\(OM^2=2\cdot IO^2\)

=>\(IO^2=\frac{OM^2}{2}\)

ΔOIC vuông tại I

=>\(OI^2+IC^2=OC^2\)

=>\(OI^2=OC^2-IC^2=R^2-\left(\frac{3\sqrt2}{2}\cdot OM\right)^2=R^2-OM^2\cdot\frac92\)

=>\(\frac{OM^2}{2}+\frac92\cdot OM^2=R^2\)

=>\(R^2=5\cdot OM^2\)

=>\(OM^2=\frac{R^2}{5}\)

=>\(OM=\frac{R\sqrt5}{5}\)

28 tháng 8

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

28 tháng 8

Học CMATH à bạn ?

S
28 tháng 8

a. xét △ BIA và △ BAC có:

góc BIA = góc BAC = 90 độ

góc IAB = góc ACB (cùng phụ với góc B)

⇒ △ BIA ~ △ BAC (g-g)

\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)

b. xét △ BIA và △ AIC ta có:

góc BIA = góc AIC = 90 độ

góc IAB = góc ICA (cùng phụ với góc B)

⇒ △ BIA ~ △ AIC (g-g)

\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)

c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)

ta có: AB.AC = BC.AI

\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)

△ ABC vuông tại A có:

\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰

⇒ góc C = 90⁰ - 23⁰ = 67⁰

d. xét tứ giác AHIK có:

góc BAC = góc AHI = góc IKA = 90 độ

⇒ tứ giác AHIK là hình chữ nhật

⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)

e. xét △ AKI và △ AIC ta có:

góc AKI = góc AIC = 90 độ

góc AIK = góc ACI (cùng phụ với góc IAK)

⇒ △ AKI ~ △ AIC (g-g)

\(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)

áp dụng định lý pythagore vào △ AIB vuông tại I ta có:

\(AI^2=AB^2-BI^2\) (2)

TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)

gọi O là giao điểm của đường chéo HK và AI

AHIK là hình chữ nhật ⇒ OH = OA

⇒ △ OHA cân tại O

⇒ góc OHA = góc OAH

xét △ AHK và △ ACB ta có:

góc A chung

góc AHK = góc ACB (cùng bằng HAO)

⇒ △ AHK ~ △ ACB (g-g)

f. vì góc ACB = góc IAB (câu a)

nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)

mà góc AHO = góc IAB (câu e)

\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)

từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)

mà HI = AK (tứ giác AHIK là hình chữ nhật)

\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

S
28 tháng 8

https://www.mediafire.com/view/081yqwybhunkx2n/4775e38e-3527-4b6b-b173-16c028c7b87b.jfif/file

link hình ảnh, mình không up ảnh lên được

Bài 2:

Xét ΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC

=>MN//AC và \(MN=\frac{AC}{2}\)

Xét ΔDAC có

S,R lần lượt là trung điểm của DA,DC

=>SR là đường trung bình của ΔDAC

=>SR//AC và \(SR=\frac{AC}{2}\)

Ta có: MN//AC

SR//AC

Do đó: MN//SR

Ta có: \(MN=\frac{AC}{2}\)

\(SR=\frac{AC}{2}\)

Do đó: MN=SR

Xét ΔABD có

M,S lần lượt là trung điểm của AB,AD

=>MS là đường trung bình của ΔABD

=>MS//BD

mà BD⊥AC

nên MS⊥AC

Ta có: MS⊥AC

MN//AC

Do đó: MS⊥MN

Xét tứ giác MNRS có

MN//RS

MN=RS

Do đó: MNRS là hình bình hành

Hình bình hành MNRS có MS⊥MN

nên MNRS là hình chữ nhật

=>M,N,R,S cùng thuộc một đường tròn

Bài 3:

a: Xét (O) có

ΔACF nội tiếp

AF là đường kính

Do đó: ΔACF vuông tại C

=>CA⊥CF

mà BH⊥AC

nên BH//CF

b: Xét (O) có

ΔABF nội tiếp

AF là đường kính

Do đó: ΔABF vuông tại B

=>BF⊥BA

mà CH⊥BA

nên CH//BF

Xét tứ giác BHCF có

BH//CF
BF//CH

Do đó: BHCF là hình bình hành


S
28 tháng 8

a. xét △ BIA và △ BAC có:

góc BIA = góc BAC = 90 độ

góc IAB = góc ACB (cùng phụ với góc B)

⇒ △ BIA ~ △ BAC (g-g)

\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)

b. xét △ BIA và △ AIC ta có:

góc BIA = góc AIC = 90 độ

góc IAB = góc ICA (cùng phụ với góc B)

⇒ △ BIA ~ △ AIC (g-g)

\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)

c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)

ta có: AB.AC = BC.AI

\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)

△ ABC vuông tại A có:

\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰

⇒ góc C = 90⁰ - 23⁰ = 67⁰

d. xét tứ giác AHIK có:

góc BAC = góc AHI = góc IKA = 90 độ

⇒ tứ giác AHIK là hình chữ nhật

⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)

e. xét △ AKI và △ AIC ta có:

góc AKI = góc AIC = 90 độ

góc AIK = góc ACI (cùng phụ với góc IAK)

⇒ △ AKI ~ △ AIC (g-g)

\(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)

áp dụng định lý pythagore vào △ AIB vuông tại I ta có:

\(AI^2=AB^2-BI^2\) (2)

TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)

gọi O là giao điểm của đường chéo HK và AI

AHIK là hình chữ nhật ⇒ OH = OA

⇒ △ OHA cân tại O

⇒ góc OHA = góc OAH

xét △ AHK và △ ACB ta có:

góc A chung

góc AHK = góc ACB (cùng bằng HAO)

⇒ △ AHK ~ △ ACB (g-g)

f. vì góc ACB = góc IAB (câu a)

nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)

mà góc AHO = góc IAB (câu e)

\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)

từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)

mà HI = AK (tứ giác AHIK là hình chữ nhật)

\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

S
28 tháng 8

https://www.mediafire.com/view/081yqwybhunkx2n/4775e38e-3527-4b6b-b173-16c028c7b87b.jfif/file

link hình ảnh, mình không up ảnh lên được

S
28 tháng 8

a. xét △ BIA và △ BAC có:

góc BIA = góc BAC = 90 độ

góc IAB = góc ACB (cùng phụ với góc B)

⇒ △ BIA ~ △ BAC (g-g)

\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)

b. xét △ BIA và △ AIC ta có:

góc BIA = góc AIC = 90 độ

góc IAB = góc ICA (cùng phụ với góc B)

⇒ △ BIA ~ △ AIC (g-g)

\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)

c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)

ta có: AB.AC = BC.AI

\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)

△ ABC vuông tại A có:

\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰

⇒ góc C = 90⁰ - 23⁰ = 67⁰

d. xét tứ giác AHIK có:

góc BAC = góc AHI = góc IKA = 90 độ

⇒ tứ giác AHIK là hình chữ nhật

⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)

e. xét △ AKI và △ AIC ta có:

góc AKI = góc AIC = 90 độ

góc AIK = góc ACI (cùng phụ với góc IAK)

⇒ △ AKI ~ △ AIC (g-g)

\(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)

áp dụng định lý pythagore vào △ AIB vuông tại I ta có:

\(AI^2=AB^2-BI^2\) (2)

TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)

gọi O là giao điểm của đường chéo HK và AI

AHIK là hình chữ nhật ⇒ OH = OA

⇒ △ OHA cân tại O

⇒ góc OHA = góc OAH

xét △ AHK và △ ACB ta có:

góc A chung

góc AHK = góc ACB (cùng bằng HAO)

⇒ △ AHK ~ △ ACB (g-g)

f. vì góc ACB = góc IAB (câu a)

nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)

mà góc AHO = góc IAB (câu e)

\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)

từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)

mà HI = AK (tứ giác AHIK là hình chữ nhật)

\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

S
28 tháng 8

https://www.mediafire.com/view/081yqwybhunkx2n/4775e38e-3527-4b6b-b173-16c028c7b87b.jfif/file

link hình ảnh, mình không up ảnh lên được

a: Gọi G là giao điểm của BC và OI

I đối xứng với O qua BC

=>BC là đường trung trực của OI

=>BO=BI và CO=CI

mà BO=CO

nên BO=BI=CO=CI

=>BOCI là hình thoi

=>OI⊥BC tại G và G là trung điểm chung của OI và BC

Gọi K là giao điểm thứ hai của AO với (O)

=>AK là đường kính của (O)

Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BK⊥BA

mà CH⊥BA

nên BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>CK⊥CA

mà BH⊥CA

nên BH//CK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà G là trung điểm của BC

nên G là trung điểm của HK

Xét ΔKAH có

O,G lần lượt là trung điểm của KA,KH

=>OG là đường trung bình của ΔKAH

=>AH=2OG

mà OI=2OG

nên AH=OI

Ta có: AH⊥BC

OI⊥BC

Do đó: AH//OI

Xét tứ giác AHIO có

AH//OI

AH=OI

Do đó: AHIO là hình bình hành

=>HI//AO