
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn học CMATH phải không vậy bạn? Mình thấy quen quen.

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.
a: Kẻ OI⊥CD tại I
ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
=>IC=ID
ΔOMN cân tại O
mà OI là đường cao
nên I là trung điểm của MN
=>IM=IN
Ta có: IM+MC=IC
IN+ND=ID
mà IM=IN và IC=ID
nên MC=ND
b: ΔOMN vuông tại O có OM=ON
nên ΔOMN vuông cân tại O
=>\(MN^2=OM^2+ON^2=2\cdot OM^2\)
=>\(MN=OM\cdot\sqrt2\)
Vì CM=MN=ND
nên \(CM=MN=ND=\frac{CD}{3}\)
=>\(CD=3\cdot MN=3\sqrt2\cdot OM\)
I là trung điểm của CD
=>\(IC=\frac{CD}{2}=\frac{3\sqrt2}{2}\cdot OM\)
ΔOMN vuông cân tại O
=>\(\hat{OMI}=45^0\)
Xét ΔOMI vuông tại I có \(\hat{OMI}=45^0\)
nên ΔOMI vuông cân tại I
=>\(IM=IO\)
ΔOMI vuông tại I
=>\(IM^2+IO^2=OM^2\)
=>\(OM^2=2\cdot IO^2\)
=>\(IO^2=\frac{OM^2}{2}\)
ΔOIC vuông tại I
=>\(OI^2+IC^2=OC^2\)
=>\(OI^2=OC^2-IC^2=R^2-\left(\frac{3\sqrt2}{2}\cdot OM\right)^2=R^2-OM^2\cdot\frac92\)
=>\(\frac{OM^2}{2}+\frac92\cdot OM^2=R^2\)
=>\(R^2=5\cdot OM^2\)
=>\(OM^2=\frac{R^2}{5}\)
=>\(OM=\frac{R\sqrt5}{5}\)

Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.

a. xét △ BIA và △ BAC có:
góc BIA = góc BAC = 90 độ
góc IAB = góc ACB (cùng phụ với góc B)
⇒ △ BIA ~ △ BAC (g-g)
\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)
b. xét △ BIA và △ AIC ta có:
góc BIA = góc AIC = 90 độ
góc IAB = góc ICA (cùng phụ với góc B)
⇒ △ BIA ~ △ AIC (g-g)
\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)
c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)
ta có: AB.AC = BC.AI
\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)
△ ABC vuông tại A có:
\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰
⇒ góc C = 90⁰ - 23⁰ = 67⁰
d. xét tứ giác AHIK có:
góc BAC = góc AHI = góc IKA = 90 độ
⇒ tứ giác AHIK là hình chữ nhật
⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)
e. xét △ AKI và △ AIC ta có:
góc AKI = góc AIC = 90 độ
góc AIK = góc ACI (cùng phụ với góc IAK)
⇒ △ AKI ~ △ AIC (g-g)
⇒ \(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)
áp dụng định lý pythagore vào △ AIB vuông tại I ta có:
\(AI^2=AB^2-BI^2\) (2)
TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)
gọi O là giao điểm của đường chéo HK và AI
AHIK là hình chữ nhật ⇒ OH = OA
⇒ △ OHA cân tại O
⇒ góc OHA = góc OAH
xét △ AHK và △ ACB ta có:
góc A chung
góc AHK = góc ACB (cùng bằng HAO)
⇒ △ AHK ~ △ ACB (g-g)
f. vì góc ACB = góc IAB (câu a)
nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)
mà góc AHO = góc IAB (câu e)
\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)
từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)
mà HI = AK (tứ giác AHIK là hình chữ nhật)
\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

Bài 2:
Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và \(MN=\frac{AC}{2}\)
Xét ΔDAC có
S,R lần lượt là trung điểm của DA,DC
=>SR là đường trung bình của ΔDAC
=>SR//AC và \(SR=\frac{AC}{2}\)
Ta có: MN//AC
SR//AC
Do đó: MN//SR
Ta có: \(MN=\frac{AC}{2}\)
\(SR=\frac{AC}{2}\)
Do đó: MN=SR
Xét ΔABD có
M,S lần lượt là trung điểm của AB,AD
=>MS là đường trung bình của ΔABD
=>MS//BD
mà BD⊥AC
nên MS⊥AC
Ta có: MS⊥AC
MN//AC
Do đó: MS⊥MN
Xét tứ giác MNRS có
MN//RS
MN=RS
Do đó: MNRS là hình bình hành
Hình bình hành MNRS có MS⊥MN
nên MNRS là hình chữ nhật
=>M,N,R,S cùng thuộc một đường tròn
Bài 3:
a: Xét (O) có
ΔACF nội tiếp
AF là đường kính
Do đó: ΔACF vuông tại C
=>CA⊥CF
mà BH⊥AC
nên BH//CF
b: Xét (O) có
ΔABF nội tiếp
AF là đường kính
Do đó: ΔABF vuông tại B
=>BF⊥BA
mà CH⊥BA
nên CH//BF
Xét tứ giác BHCF có
BH//CF
BF//CH
Do đó: BHCF là hình bình hành

a. xét △ BIA và △ BAC có:
góc BIA = góc BAC = 90 độ
góc IAB = góc ACB (cùng phụ với góc B)
⇒ △ BIA ~ △ BAC (g-g)
\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)
b. xét △ BIA và △ AIC ta có:
góc BIA = góc AIC = 90 độ
góc IAB = góc ICA (cùng phụ với góc B)
⇒ △ BIA ~ △ AIC (g-g)
\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)
c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)
ta có: AB.AC = BC.AI
\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)
△ ABC vuông tại A có:
\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰
⇒ góc C = 90⁰ - 23⁰ = 67⁰
d. xét tứ giác AHIK có:
góc BAC = góc AHI = góc IKA = 90 độ
⇒ tứ giác AHIK là hình chữ nhật
⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)
e. xét △ AKI và △ AIC ta có:
góc AKI = góc AIC = 90 độ
góc AIK = góc ACI (cùng phụ với góc IAK)
⇒ △ AKI ~ △ AIC (g-g)
⇒ \(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)
áp dụng định lý pythagore vào △ AIB vuông tại I ta có:
\(AI^2=AB^2-BI^2\) (2)
TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)
gọi O là giao điểm của đường chéo HK và AI
AHIK là hình chữ nhật ⇒ OH = OA
⇒ △ OHA cân tại O
⇒ góc OHA = góc OAH
xét △ AHK và △ ACB ta có:
góc A chung
góc AHK = góc ACB (cùng bằng HAO)
⇒ △ AHK ~ △ ACB (g-g)
f. vì góc ACB = góc IAB (câu a)
nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)
mà góc AHO = góc IAB (câu e)
\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)
từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)
mà HI = AK (tứ giác AHIK là hình chữ nhật)
\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

a. xét △ BIA và △ BAC có:
góc BIA = góc BAC = 90 độ
góc IAB = góc ACB (cùng phụ với góc B)
⇒ △ BIA ~ △ BAC (g-g)
\(\Rightarrow\frac{AB}{IB}=\frac{BC}{AB}\Rightarrow AB^2=IB\cdot BC\)
b. xét △ BIA và △ AIC ta có:
góc BIA = góc AIC = 90 độ
góc IAB = góc ICA (cùng phụ với góc B)
⇒ △ BIA ~ △ AIC (g-g)
\(\Rightarrow\frac{IA}{IB}=\frac{IC}{IA}\Rightarrow IA^2=IB\cdot IC\)
c. áp dụng định lý pythagore vào △ ABC vuông tại A ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{26^2-10^2}=24\left(\operatorname{cm}\right)\)
ta có: AB.AC = BC.AI
\(\Rightarrow AI=\frac{AB\cdot AC}{BC}=\frac{24\cdot10}{26}=\frac{120}{13}\left(\operatorname{cm}\right)\)
△ ABC vuông tại A có:
\(\sin B=\frac{AC}{BC}=\frac{10}{26}\Rightarrow\) góc B ≈ 23⁰
⇒ góc C = 90⁰ - 23⁰ = 67⁰
d. xét tứ giác AHIK có:
góc BAC = góc AHI = góc IKA = 90 độ
⇒ tứ giác AHIK là hình chữ nhật
⇒ AI = HK = \(\frac{120}{13}\left(\operatorname{cm}\right)\)
e. xét △ AKI và △ AIC ta có:
góc AKI = góc AIC = 90 độ
góc AIK = góc ACI (cùng phụ với góc IAK)
⇒ △ AKI ~ △ AIC (g-g)
⇒ \(\frac{AK}{AI}=\frac{AI}{AC}\Rightarrow AI^2=AK\cdot AC\) (1)
áp dụng định lý pythagore vào △ AIB vuông tại I ta có:
\(AI^2=AB^2-BI^2\) (2)
TỪ (1) và (2) ⇒ \(AK\cdot AC=AB^2-BI^2\)
gọi O là giao điểm của đường chéo HK và AI
AHIK là hình chữ nhật ⇒ OH = OA
⇒ △ OHA cân tại O
⇒ góc OHA = góc OAH
xét △ AHK và △ ACB ta có:
góc A chung
góc AHK = góc ACB (cùng bằng HAO)
⇒ △ AHK ~ △ ACB (g-g)
f. vì góc ACB = góc IAB (câu a)
nên \(\cot ACB=\cot IAB=\frac{AH}{HI}\) (3)
mà góc AHO = góc IAB (câu e)
\(\Rightarrow\cot IAB=\cot AHO=\frac{AH}{AK}\) (4)
từ (3) và (4) \(\frac{AH}{HI}=\frac{AH}{AK}\)
mà HI = AK (tứ giác AHIK là hình chữ nhật)
\(\Rightarrow\cot ACB=\frac{AH}{AK}\Rightarrow AH=AK\cdot\cot ACB\) (đpcm)

a: Gọi G là giao điểm của BC và OI
I đối xứng với O qua BC
=>BC là đường trung trực của OI
=>BO=BI và CO=CI
mà BO=CO
nên BO=BI=CO=CI
=>BOCI là hình thoi
=>OI⊥BC tại G và G là trung điểm chung của OI và BC
Gọi K là giao điểm thứ hai của AO với (O)
=>AK là đường kính của (O)
Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BK⊥BA
mà CH⊥BA
nên BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>CK⊥CA
mà BH⊥CA
nên BH//CK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà G là trung điểm của BC
nên G là trung điểm của HK
Xét ΔKAH có
O,G lần lượt là trung điểm của KA,KH
=>OG là đường trung bình của ΔKAH
=>AH=2OG
mà OI=2OG
nên AH=OI
Ta có: AH⊥BC
OI⊥BC
Do đó: AH//OI
Xét tứ giác AHIO có
AH//OI
AH=OI
Do đó: AHIO là hình bình hành
=>HI//AO
Bạn học CMATH phải không vậy bạn? Mình thấy phiếu quen quen.