
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{ACD}=80^0+30^0=110^0\)
Ta có: \(\hat{DCB}+\hat{B}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: ta có: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=>\(\begin{cases}a+b-c=c\\ a+c-b=b\\ b+c-a=a\end{cases}\Rightarrow\begin{cases}a+b=2c\\ a+c=2b\\ b+c=2a\end{cases}\)
\(A=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

Ta có: tia CD nằm giữa hai tia CF và CB
=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)
Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên ED//CF
Ta có: AB//CF
ED//CF
Do đó: AB//DE

Giải:
\(\hat{A}\) + \(\hat{B}\) + \(\hat{C}\) = 180\(^0\) (tổng ba góc trong 1 tam giác)
\(\hat{A}\) = 180\(^0\) - \(\hat{B}-\hat{C}\)
\(\hat{A}\) = 180\(^0\) - \(70^0-30^0\)
\(\hat{A}\) = 110\(^0-30^0\)
\(\hat{A}\) = 80\(^0\)
\(\hat{A}\) = \(D\hat{C}A\)
Mà góc A và góc DCA là hai góc ở vị trí so le trong.
Vậy AB // CD

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

Bài 8:
Chu vi đáy là:
3,5+3,5+3+6=7+9=16(cm)
Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)
Bài 9:
Diện tích đáy là:
\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)
Thể tích của khối bê tông là:
\(84\cdot22=1848\left(m^3\right)\)
Số tiền phải trả là:
\(1848\cdot2500000=4620000000\) (đồng)

Cách 1: ta có: \(\hat{yAB}+\hat{y^{\prime}AB}=180^0\) (hai góc kề bù)
=>\(\hat{y^{\prime}AB}=180^0-105^0=75^0\)
ta có: \(\hat{y^{\prime}AB}=\hat{x^{\prime}Bz}\left(=75^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Ay//Bz
=>yy'//Bz
Cách 2:
Ta có: \(\hat{x^{\prime}Bz}+\hat{xBz}=180^0\) (hai góc kề bù)
=>\(\hat{xBz}=180^0-75^0=105^0\)
Ta có: \(\hat{xBz}=\hat{yAB}\left(=105^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ay//Bz
=>yy'//Bz
a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)
a, ta có A= 180 độ -70 độ -30 độ = 80 độ ( tổng 3 góc trong 1 tam giác = 180 độ )
mà AB=CD=80 độ nên AB//CD ( vì song song nên bằng nhau ) 1
b, góc BAC = 80 độ (1)